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ABSTRACT

In this paper we present MuACOsm — a new method of
learning Finite-State Machines (FSM) based on Ant Colony
Optimization (ACO) and a graph representation of the search
space. The input data is a set of events, a set of actions and
the number of states in the target FSM. The goal is to max-
imize the given fitness function, which is defined on the set
of all FSMs with given parameters. The new algorithm is
compared with evolutionary algorithms and a genetic pro-
gramming related approach on the well-known Artificial Ant
problem.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]: Automatic Programming;
1.2.6.e [Computing Methodologies]: Induction

General Terms

Algorithms, Experimentation

Keywords

finite-state machine, learning, induction, ant colony opti-
mization

1. INTRODUCTION

In the area of search-based software engineering [10, 16,
15] search optimization techniques are used for automatic
program generation. The most common algorithms in use
are various evolutionary algorithms. Along with LISP S-
expressions and program trees, one of the possible program
representations is a finite-state machine.

Automata-based programming [27] is a relatively new pro-
gramming paradigm that uses FSMs as key components of
software systems. A software system in this paradigm con-
sists of a finite-state machine and an automated-controlled
object. The FSM receives input events from the environ-
ment. Upon receiving an event the FSM makes a transition
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to one of its states and, possibly, produces a sequence of out-
put actions. These output actions control the automated-
controlled object. Although a complex software system may
contain many automated-controlled objects, in this work we
focus on software systems with only one such object.

The problem of inducing FSMs and other automata types
received a significant amount of research over the years.
In [29], Spears and Gordon used evolutionary strategies to
evolve FSM controllers for the Competition for Resources
problem. In [23], Lucas and Reynolds evolved finite-state
transducers from test examples with a simple random mu-
tation hill climbing algorithm (RMHC).

Some interesting results were achieved in evolving deter-
ministic finite automata (DFA). A DFA is basically an FSM
without output actions, but with two disjoint sets of states
instead of one — rejecting states and accepting states. DFA
are most commonly used in language recognition problems.

In [24], Lucas and Reynolds compared an evolutionary
strategy (ES) with the deterministic Evidence-Driven State
Merging algorithm (EDSM) [21] on the problem of inducing
DFA from samples of labeled data. It was found that the ES
is more effective than the EDSM when the number of states
is relatively small.

Later, in [14], Gomez introduced a hybrid method com-
bining incremental learning and evolution for the problem
of DFA induction. The main idea of this method is to sort
the examples from the training set by length in ascending
order. The training set is then divided into a number of
blocks. The algorithm first tries to build a DFA consistent
only with the first block and then consecutively adds new
blocks.

Over the last few decades, many bio-inspired metaheuris-
tic techniques were developed, evolutionary computation be-
ing only one of them, for example:

e Ant Colony Optimization (ACO) [11, 13, 30, 12];
e Particle Swarm Optimization (PSO) [18, 28];

e Artificial Bee Colony Algorithm [25, 26];

e Firefly Algorithm [34].

To our knowledge, none of these techniques have ever been
applied to FSM induction. In paper [7] we proposed an algo-
rithm for FSM induction which is based on an Ant Colony
Optimization algorithm — the MuACOsm algorithm. The
performance of the new algorithm has already been com-
pared with RMHC, ES and GA on a couple of benchmark



problems [7, 8], including test-based extended finite-state
machine induction and the Artificial Ant problem [17, 20]
with the John Muir trail.

Next, the authors of [5] compared MuACOsm with a GA
and a (p, A)-ES on the problem of inducing FSMs for con-
trolling an unmanned aircraft. They found that MuACOsm
allowed to build good FSMs faster than the other algorithms,
including the GA originally used for this problem in [2].

In this work we present a new improved version of our
algorithm and an extensive experimental evaluation on a
benchmark problem — the Artificial Ant problem — with the
more common Santa Fe trail.

We consider the problem of learning FSMs in the most
general way. The target FSM is defined by the maximum
number of accessible states N, a set of events ¥ and a set
of actions A. The target model problem that the FSM has
to solve is formalized with the use of a real-valued fitness
function f which is defined on the set of all finite-state ma-
chines with parameters (NV,X, A). The goal is to find an
FSM A with a value of the fitness function f not less than
some predefined boundary value f:

f(A) = fo.

2. FINITE-STATE MACHINES

A finite-state machine is a six-tuple (S, so, 3, A, 4, ), where
S is a set of states, so € S is the start state, ¥ is a set of
input events and A is a set of output actions. § : Sx 3 — S
is the transition function and X : S x ¥ — A is the action
function.

An example of an FSM is shown on Fig. 1. Each transition
is marked with an event (before the slash) and an action
(after the slash). The start state is state 1.

P/x1 R/x1

R/x2

a a
SR

Figure 1: An example of an FSM with two states,
event set ¥ = {P, R}, and actions set A = {z1, 22}

A mutation of an FSM is a rather small change in its
structure. For example, a mutation can change a transition’s
output action or destination state. In this work we consider
two following FSM mutation types.

e Change transition end state. For a random tran-
sition in the FSM, the transition’s end state is set to
another state selected uniformly randomly from the set
of all states S.

e Change transition action. For a random transition
in the FSM, the transition’s output action is set to
another action selected uniformly randomly from the
set of actions A.

In our algorithm we use a rather straightforward repre-
sentation of FSMs — full transition tables. The transition
function and action function are stored in the form of ta-
bles. An end state and an action are stored for each state
and event combination. The start state of all FSMs is always
the first state, so it need not be stored. Table 1 demonstrates
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Table 1: A representation of the FSM on Fig. 1
Event

State
T
2 (1,21) | (2,21)

a representation of the example FSM shown on Fig. 1. A
cell of the table should be read like “(end state, action)”.

3. ACO OVERVIEW

Ant Colony Optimization algorithms are a family of meta-
heuristics inspired by the foraging behaviour of real ants.
The first ACO algorithm called Ant System was proposed
by Marco Dorigo in 1991 [11, 13] and was used to tackle
the traveling salesman problem. Since then, a number of
ACO models were developed by many researchers, some of
them being the Ant Colony System [12], the MAX MIN
Ant System [30] and the Rank-based Ant System [4]. These
algorithms were applied to a number of combinatorial opti-
mization problems, including:

e sequential ordering problem;

e knapsack problem;

bin packing;
o classification rule mining;
e quadratic assignment problem.

In order to apply ACO to some combinatorial problem,
one must devise a graph representation of the search space.
In ACO solutions are built by a colony (set) of artificial ants
which use a stochastic strategy. Solutions can be represented
either as paths in a graph called the construction graph, or
simply by graph nodes. Each edge (u,v) of the graph (u
and v are nodes of the graph) has an assigned pheromone
value Ty, and can also have an associated heuristic informa-
tion Myy. The pheromone values are modified by the ants
in the process of solution construction, while the heuristic
information is assigned initially and is not changed.

In general, an ACO algorithm consists of three operations
which are repeated until a viable solution is found or a stop
criterion is met.

1. ConstructSolutions. Each ant explores the graph fol-
lowing a certain path. It chooses the next edge to
visit according to the pheromone value and heuristic
information of this edge. When an edge has been se-
lected, the ant appends it to its path and moves to the
next node. Commonly, the ants continue exploring the
graph until each of them has built a complete solution
to the problem.

2. UpdatePheromones. Pheromone values on all graph
edges are modified. A particular pheromone value can
increase if the edge it is associated with has been trav-
eled by an ant or it can decrease due to pheromone
evaporation. The amount of pheromone that each ant
deposits on a graph edge depends on the quality of the
solution built by this ant, which is measured by the
fitness function value of this solution.



3. DaemonActions (Optional). Some procedure is exe-
cuted performing actions that cannot be done by indi-
vidual ants. An example of such a procedure is local
optimization.

When we apply ACO to FSM generation we have to deal
with huge graphs, sometimes consisting of several millions
of nodes. To deal with this, we apply a variation of the
expansion technique from [1] — we limit the lengths of the ant
paths to reduce the size of the graph we store in memory.

4. MUTATION-BASED ACO FOR LEARN-
ING FINITE-STATE MACHINES

In this section we provide a full description of the new al-
gorithm. First we describe the representation of the search
space. Second, some specific features of MuACOsm are ex-
plained. Next, all ACO steps of our algorithm are detailed.
Finally, we review the most significant differences between
the proposed algorithm and its previous version described
in [7, 8].

4.1 Search Space Representation

The search space — a set of all FSMs with specified pa-
rameters (N, X, A) — is represented in the form of a directed
graph G with the following properties.

e The nodes of G are associated with FSMs.

e Let u be a node associated with FSM A; and v be
a node associated with FSM A;. If machine Ay lays
within one mutation from A; then G contains edges
u — v and v = u. Otherwise, nodes u and v are not
connected with an edge, except for the case discussed
further in section 4.8.

e Therefore, for each pair of FSMs A; and Az and the
corresponding pair of nodes u and v, there exists a
path in G from u to v and also from v to wu.

An example of a small part of the search space is shown
on Fig. 2. Circles represent the nodes associated with FSMs.
The meaning of solid and dashed edges will be explained in
section 4.5.2. Each edge is marked with a mutation written
in the following notation.

e Transitions function mutation:

T: (state, event) — “new end state”

e Actions function mutation:

A:

(state, event) — “new action”

4.2 MuACOsm Specif cs

Although the general scheme of MuACOsm complies with
the classical ACO algorithm, there are some major differ-
ences. Firstly, due to the nature of the problem, the con-
struction graph we use differs significantly from construc-
tion graphs used in other ACO applications. Commonly,
the edges and nodes of the graph represent solution compo-
nents. Full solutions are built by the ants in the process of
foraging. On the opposite, in our case, nodes of the graph
represent complete solutions themselves. The ants travel be-
tween solutions, which are actually built by an external local
search procedure — FSM mutation.
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Figure 2: An example of a small part of the search
space.

Secondly, our construction graphs can be extremely large —
up to several millions of nodes. Such graphs cannot be fully
built or stored in memory. In fact, if we were to build
a full construction graph we would effectively perform a
brute force search. To counter this problem, the algorithm
starts off with only one node in the construction graph — a
randomly generated solution. When the ants traverse the
graph, they determine points in the search space where new
solutions should be generated by the local search procedure.

4.3 Initial Solution Generation

In the beginning of the algorithm a random initial solution
is generated to become the root of the construction graph.
All first-generation ants will start building paths from the
root of the graph. Although generation of random initial
solutions is the simplest and most straightforward way, it is
not the most efficient one.

If the initial solution has a low fitness value, MuACOsm
can spend several extra iterations while escaping the low-
fitness area of the search space. Another way would be to
generate a number of random solutions and pick the best
one. However, we found to be most efficient the use of a
simple random mutation hill climber for a small number of
fitness evaluations.

4.4 Heuristic Information

As discussed before in Section 3, each edge of the con-
struction graph can have an associated value called heuristic
information. Consider an edge (v — v), where u and v are
nodes of the construction graph G. The heuristic informa-
tion 7y, is calculated as follows:

Tuw = Mz (1min, f(v) = f(u)),

where Mmin is a small positive constant value. The 7Nmin
lower bound ensures that the heuristic information is always
positive.

4.5 Path Construction

The path construction procedure consists of two phases.
In the first phase a number of start nodes are selected from
among all the graph nodes. In the second phase, the ants,
starting from selected nodes, traverse the graph.

4.5.1 Start nodes selection

We have experimented with several strategies for start
nodes selection, including starting the ants from nodes of
the best-so-far ant path and starting the ants from nodes se-
lected with the “roulette wheel” algorithm [3] from among all
the nodes in the graph. However, the most efficient strategy



we found was to launch all the ants from the node associated
with the best-so-far solution.

4.5.2 Next node selection

Let the artificial ant be located in a node u associated
with FSM A. If this node has adjacent edges, then the
ant selects the next node v to visit according to the rules
discussed below. If node u does not have any children, then
the next node is always selected using the first rule.

1. Expansion. With a probability of phew the ant at-
tempts to construct new edges of the graph by making
Nt mutations of FSM A. The procedure of process-
ing a single mutation of machine A is as follows:

e construct a mutated FSM Anut;

e find a node ¢t in graph G associated with Aput; if
G does not contain such a node, construct a new
node and associate it with Amut;

e add an edge (u,t) to G.

After all Nmut mutations have been performed, the ant
selects the best newly constructed node v and moves
to that node.

ACO path selection. With a probability of (1 — pnew)
the ant stochastically selects the next node from the

existing successors set N, of node u. Node v is se-

lected with a probability defined by the classical ACO

formula:

a B
Tuv * Tuw
S el
WEN, "uw Muw

where v € N,, and «, 8 € [0, 1].

Puv =

)

Solid edges on Fig. 2 mark a possible path of an ant while
the dashed edges represent those mutations that were made
by some ant but were not followed by any ant.

4.6 Colony Strategies — Managing the Ants

While the ant’s path selection rule defines the strategy
of individual ants, there is also a strategy that controls the
whole colony. This strategy defines when and how each ant
is launched. The two common ant colony strategies are dis-
cussed below.

e Consecutive ant colony. All ants of the colony are
launched consecutively. Each ant runs until it decides
to stop, then the next ant is launched and so on.

e Parallel ant colony. Here, ants take turns to make
one move each until all the ants decide to stop. In
most ACO applications this strategy is not any differ-
ent from the consecutive strategy, because pheromone
values are updated after all ants are done traversing
the graph. However, it is not the case in our approach,
because the ants modify the construction graph while
traversing it.

Regardless of the concrete strategy, the colony uses the
following mechanisms to avoid stagnation:

e cach ant in the colony is given at most ngiag steps to
make without an increase in its best fitness value; when
the ant exceeds this number, it is stopped;
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e the whole colony of artificial ants is given at most Ngtag
iterations to run without an increase in the best fitness
value; after this number of iterations is exceeded, the
algorithm is restarted.

4.7 Pheromone Update

There are several strategies of pheromone update described
in the literature, including the Ant System pheromone up-
date, elitist pheromone update and rank-based pheromone
update. However, for the problem of FSM induction we have
devised a new pheromone update rule we call the global eli-
tist min-bound pheromone update based on the MAX MIN
rule [30] and the elitist rule [11], that fits our problem better
than any other strategy.

For each graph edge (u, v) we store 705" — the best phero-
mone value that any ant has ever deposited on edge (u,v).
For each ant path, a sub-path is selected that spans from the
start of the path to the best node in the path. The values
of 725 are updated for all edges along this sub-path. Next,
for each graph edge (u,v), the pheromone value is updated
according to the formula:

_ best
Tuv = MAZ(Tmin, PTuv + Tuy ),

where p € [O, 1] is the evaporation rate and Tmin is an empir-
ically selected minimum pheromone bound (we use a value
of 0.001).

4.8 Daemon Actions

As discussed in Section 4.5, an ant does not always select
a node with a higher fitness value than its current one. This
feature allows the algorithm to efficiently escape local max-
ima. However, such behaviour can decrease performance of
other ants, forcing them to reach better solutions through
a series of worse ones. To counter this, the “nondecreasing
paths” algorithm was introduced. For each ant’s path we
select a fitness-nondecreasing sequence of nodes — sequence
(no .. .my) such that:

Vie[0...1=1],V] >i: f(An;) > f(An,).

From nodes of this sequence we can build a path, con-
necting its nodes with corresponding mutations. Then, on
the stage of pheromone update, pheromone is updated for
all the nondecreasing paths the way it would be updated for
regular ant paths.

Fitness value

Ant steps

Figure 3: An example of an ant path (1,2,3,4,5,6,7)
and the corresponding nondecreasing path (1,2,3,7)
(marked red and bold).



An example of an ant path and a corresponding nonde-
creasing path is shown on Fig. 3. Steps 2 and 3 in the
example led to an increase in the ant’s best fitness. Then,
steps 4 and 5 led to a decrease in its current fitness. Step
6 was more succesful than 4 or 5, but still worse than the
best step 3. At last, step 7 became the best solution found
by the ant. Therefore, the original path is (1,2,3,4,5,6,7)
and the nondecreasing path would be (1,2,3,7).

4.9 Differences from Previous Version

There are three major differences between the algorithm
described above and its previous version reported in [7, 8].
First, the use of a (1+1)-evolutionary strategy for improving
the random initial solution. The first version of MuACOsm
used the random initial solution as the root node of the
construction graph, which led to using up many fitness eval-
uations on the early stages of the search.

Second, the use of heuristic information defined on edges
of the construction graph as the absolute difference of fitness
values of adjacent nodes. The original algorithm did not
employ any heuristic information.

And third, the introduction of a lower bound for pheromone
values which allowed to avoid the unbounded decrease of
pheromone values on those graph edges that were not vis-
ited right after being built.

5. EXPERIMENTAL EVALUATION

The performance of the first version of MuACOsm has
previously been evaluated on three problems [5, 7, 8]:

e test-based extended finite-state machine induction [32,
31];

e the Artificial Ant problem with the John Muir trail [17];

e test-based induction of FSMs with continuous and dis-
crete output actions for unmanned aircraft control [5].

Preliminary experiments with that version of MuACOsm
were performed and results were compared with genetic al-
gorithms [5, 7], random mutation hill climbing and evolu-
tionary strategies [5, 8]. Comparison of the algorithms in
terms of numbers of fitness evaluations needed to find the
optimal solution showed that MuACOsm either outperforms
mentioned evolutionary algorithms or shows similar perfor-
mance. In this work we consider the Artificial Ant problem
with a more common Santa Fe trail [20].

5.1 Artif cial Ant Problem

The Artificial Ant problem, introduced by Jefferson in [17]
is a common benchmark problem often used for performance
evaluation of metaheuristic algorithms.

The problem is to find a strategy controlling an agent
(called an Artificial Ant) in a game performed on a square
toroidal field 32 by 32 cells. Some cells of the field contain
“food” pellets, which are distributed along a certain trail.
The trail usually contains turns and gaps.

There are three common trails (i.e. problem instances) for
this problem — the John Muir Trail, Santa Fe trail and Los
Altos Hills trail. In this work we focus on the first two trails
shown on Fig. 4. Black squares indicate the food, white
squares are empty and gray squares show gaps in the trail.

The Santa Fe trail has a length of 144, contains 21 turns
and 55 gaps. The John Muir trail has a smaller length of

121, but contains as much as 33 turns and 38 gaps. Both
trails contain 89 pellets of food.

Figure 4: The Santa Fe (on the left) and John Muir
(on the right) food trails.

In both trails the ant’s initial position is the leftmost up-
per cell and it is initially “looking” east. The ant receives
events from the field — it can determine whether the next cell
contains a piece of food or not. On each step it can turn left,
turn right or move forward, eating a piece of food if the next
cell contains one. The maximum number of steps the arti-
ficial ant is allowed to make varies in different experimental
setups.

In this problem there are two input events — F' (the next
cell contains food) and !F (the next cell does not contain
food) — and three output actions: L (turn left), R (turn
right) and M (move forward).

The goal in this problem is to build a finite-state machine
that would allow the artificial ant to eat all pieces of food in
the allowed number of steps. The fitness function we use is
defined in the following way:

f = Ngood + Smax — Slast — 17
anax
where ng04 is the number of food pellets eaten by the ant,
Smax 18 the maximum number of steps the ant is allowed to
make and Sjag¢ is the number of the step on which the ant
ate the last piece of food.

Algorithm parameter values that were used in the exper-

iments are presented in Table 2.

Table 2: MuACOsm parameter values.

Parameter Value
Santa Fe | John Muir

Colony type | Parallel Parallel
N 5 10

o 0.5 0.5
Nstag 50 50
Nstag 100 200
Nmut 20 60

p]’leW 076 076

« 1.0 1.0

B8 1.0 1.0

5.2 Experiments on the Santa Fe Trail

Many published results are available for the Artificial Ant
problem with the Santa Fe Trail. The best results were
achieved in [9] by two approaches:

e Memorized-Random-Tree-Search, GP + Subroutines
(43000 fitness evaluations);



e Memorized-Random-Tree-Search, Random Search +
Subroutines (20696 fitness evaluations).

Although these approaches use LISP S-expression repre-
sentation of programs, the comparison we perform is still
feasible because an S-expression can be transformed into
a finite-state machine, for example using an algorithm de-
scribed in [19]. Furthermore, we know of no approaches that
would build solutions for the Santa Fe trail faster than the
approach in [9].

In our experimental setup we varied both the number of
accessible states in the target FSM and the maximum num-
ber of steps the artificial ant is allowed to make. The exper-
iment was run 10,000 times for each case to achieve statisti-
cally meaningful results. MuACOsm found an FSM capable
of eating all pellets of food in each run. Fig. 5 shows the
mean number of fitness evaluations used to find the optimal
solution for each FSM size and maximum number of ant
steps Smax-

22000

- Limit = 400 steps -
20000 . -
Limit = 500 steps

Limit = 600 steps

Christensen and Oppacher (2007)

18000 | = =-a

16000

14000 =
12000

10000

an number of fitness evaluations

S 8000

6000

4 6 12 14 16

8 10
Number of FSM states

Figure 5: Mean fitness evaluations for different FSM
sizes and limits on the number of artificial ant steps.

Results on Fig. 5 show that MuACO sm was able to achieve
a computational effort which is less than the effort achieved
by any other published algorithm. In particular, the small-
est computational effort of 7203 mean fitness evaluations
for 600 ant steps was achieved for target FSMs with seven
states. It is approximately three times less than the mean
effort of 20696 published in [9]. A state diagram of one FSM
with five states is shown on Fig. 6. The start state on all
FSM diagrams in this paper is always state 1.

F/M

Figure 6: FSM with five states for the Santa Fe
trail that allows the ant to eat all food in 394 steps.
Unused transitions are not shown on the diagram.
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5.3 Experiments on the John Muir Trail

For the John Muir trail we compare our results with those
achieved with an evolutionary algorithm in [6] and with GA
in [33]. In [6] a rather easy experimental setup is used, which
allows the artificial ant to run for 600 steps. A much harder
setup is considered in [33], which only allots the artificial
ant with 200 steps. All compared algorithms were run 100
times until completion.

5.3.1 Easy setup: 600 steps

In our first experiment we compared our results with those
presented in [6]. The authors of [6] used an evolutionary
algorithm without crossover. They generated both non-
modular (regular) and modular FSMs. Basically, a modular
FSM can contain other FSMs encapsulated into its states.
The evolutionary algorithm used mutations that changed
the number of states in the FSMs. Therefore, FSMs in
the populations had variable numbers of states. FSMs in
the population had about 12 states when achieving perfect
scores. In case of modular FSMs, main FSMs had about
seven states, while sub-FSMs contained as much as about
13 states.

We, on the contrary, did not build modular FSMs. In-
stead, we varied the number of FSM states from 7 to 16 in
order to complete the comparison.

90000

ons

== MuACOsm
* Modular FSMs
* Non-modular FSMs

80000

=1

Mean number of fitness evaluat:
5 = -
S

7 8 9 1

0 11 12 13 14 15 16
Number of FSM states

Figure 7: John Muir trail (easy): mean fitness eval-
uations for different FSM sizes. (*) Chellapilla and
Czarnecki (1999) [6]

Results achieved in [6] are as follows. For the modular
case, perfect FSMs were achieved in 96% of runs, while gen-
eration of the perfect machine took a mean of 27500 fitness
evaluations. For the non-modular case, perfect machines
were evolved only in 88% of runs, and the mean number of
fitness evaluations rose up to 86000.

Results of experimental runs for MuACOsm as well as
plotted mean results from [6] are presented on Fig. 7. These
results show that MuACOsm is about four-five times as fast
as the EA from [6] in the non-modular case. Furthermore,
MuACOsm can build non-modular FSM solutions for this
problem about two times faster than the EA that builds
modular FSMs.

5.3.2 Hard setup: 200 steps

In this experiment the number of FSM states was also
varied from 7 to 16. FSMs with less than seven states were
not considered due to the fact that no FSM with less than



seven states can solve the problem in 200 steps as it was

proven in [33].

ot

== MuACOsm
GA - Tsarev, Shalyto (2007)

e

o

[

Mean number of fitness evaluations

9 10 11 12 13 14 15 16
Number of FSM states

Figure 8: John Muir trail (hard): mean fitness eval-
uations for different FSM sizes.

For FSMs with seven states, MuACOsm achieved a mean
number of approximately 31 x 10° fitness evaluations, while
GA showed as much as 1799 x 10° fitness evaluations. Thus,
MuACOsm is approximately 60 times faster than GA on
the minimal FSMs. Results for other FSM sizes presented
on Fig. 8 show that in these cases MuACOsm is also sev-
eral times better than GA. We should also mention that the
previous version of MuACOsm allowed to build a solution
for FSMs with seven states using as much as approximately
200 x 10° fitness evaluations, and that only with a modi-
fied fitness function. One of the generated FSMs with seven
states is shown on Fig. 9.

6. DISCUSSION AND FUTURE WORK

Experimental results presented in section 5 demonstrate
that the proposed MuACOsm algorithm is quite successful
in the application to the considered problem. Furthermore,
the proposed method proved to be successful in solving more
complex problems such as generating FSMs with continuous
and discrete output actions from test examples [5].

However, it is, of course, not clear if the proposed method
will be successful on other classes of problems involving
FSMs and other automata. In particular, the method should
certainly be compared with EA on the problems of learning
random deterministic finite automata [24] and finite state
transducers from test examples [23]. This will give a picture
of how the proposed method performs on two large classes of
problems. One more interesting direction is the exploration

Figure 9: FSM with seven states for the John Muir
trail that allows the ant to eat all food in 189 time
steps.
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of MuACOsm’s properties, influence of particular parame-
ters on the algorithm’s efficiency, possibly considering a very
simple example problem.

Another issue that needs attention is selection of the al-
gorithm’s parameters. For single-instance problems such
as the Artificial Ant problem, these parameters can be se-
lected manually or using a full factorial experiment design.
However, if we were to deal with classes of problems (e.g.
learning random DFA), we could employ some procedure for
automatic algorithm configuration such as the irace pack-
age [22].

In this particular work the values of parameters were first
selected manually for the easier Santa Fe field. Next, for
the John Muir field we shifted three exploration parame-
ters towards more intensive exploration — we substantially
increased the values of N, Nyt and Ngiag-

Furthermore, we think that it might be fruitful to apply
the proposed method to other combinatorial problems apart
from learning finite-state machines. Indeed, the only three
things that we need in order to apply the proposed algorithm
to some combinatorial problem is a problem instance model,
a set of mutation operators and a fitness function.

Last but not least, the apparent successful experience with
applying ACO to FSM induction encourages us to apply
other swarm intelligence techniques to this problem.

7. CONCLUSION

We have developed a new method of learning finite-state
machines with the use of ACO. The problem of learning
FSMs is reduced to the problem of finding an optimal node
in a graph, where nodes are associated with FSMs and edges
are associated with FSM mutations. The efficiency of the
new algorithm in terms of fitness evaluation numbers needed
to find the optimal solution was compared with traditional
algorithms on the Artificial Ant problem. The comparison
showed that the new algorithm is several times faster than
other algorithms for the considered problem.
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