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Abstract—The shortest common superstring problem has im-
portant applications in computational biology (e.g. genome assem-
bly) and data compression. This problem is NP-hard, but several
heuristic algorithms proved to be efficient for this problem. For
example, for the algorithm known as GREEDY it was shown that,
if the optimal superstring has the length of N , it produces an
answer with length not exceeding 3.5 ·N . However, in practice,
no test cases were found where the length of the answer is greater
than or equal to 2 · N . For hard test case generation for such
algorithms the traditional approach assumes creating such tests
by hand. In this paper, we propose an evolutionary algorithm
based framework for hard test case generation. We examine two
approaches: single-objective and multi-objective. We introduce
new test case quality measures and show that, according to
these measures, automatically generated tests are better than any
known ones.

I. INTRODUCTION AND PROBLEM DESCRIPTION

The shortest common superstring problem [1]–[3] is for-
mulated as follows. Given a set of strings {X1, . . . , Xn}, one
needs to find the shortest string S such that for all 1 ≤ i ≤ n
Xi is a substring of S.

This problem arises in a number of applications. For
example, it can be used in one of the models of genome
assembly [4] which is an important area of bioinformatics.
Another application is data compression: for instance, one
of the ways of storing sparse matrices while maintaining
the constant access speed is to build the shortest common
superstring for strings collected by splitting the matrix rows
into several pieces [5].

This paper is dedicated to generation of hard test cases for
this problem.

A. Definitions

Without loss of generality, we assume that the strings given
as input are substring free: there are no equal strings in the
input, and for any two different strings s and t s is not a
substring of t and vice versa.

The overlap function o(x, y) for two strings x and y, such
that x is not a substring of y and vice versa, is defined as

follows. Let the length of the string x be r, the length of y be
s. Then

o(x, y) = max{j : yi = xr−j+i, 1 ≤ i ≤ j}.

We define the concatenation of two strings x and y, which
merge their overlapped substrings, as x⊕ y. If the overlap of
these strings is k = o(x, y), then

x⊕ y = x1 . . . xryk+1yk+2 . . . ys.

B. Exact Algorithm

The shortest common superstring problem is NP-hard [3].
Here we formulate one of the known algorithms of building
the exact shortest common superstring.

Let the input strings be x1, . . . , xn, where no string is a
substring of another one. One of the exact algorithms to solve
this problem is formulated as follows:

1) Let A(S, t) be a common superstring for a set of
input strings S which ends in an input string t and is
the shortest possible.

2) For all xi, A({xi}, xi) = xi.
3) For all S, t ∈ S, u 6∈ S

A(S ∪ {u}, u) = min(A(S ∪ {u}, u), A(S, t)⊕ u).
4) Let U = {x1, . . . , xn}.
5) The answer is min1≤i≤n A(U, xi).

C. Greedy Algorithm

There are several greedy algorithms for solving the shortest
common superstring problem. We analyze the algorithm which
is known as GREEDY [1].

Let the input strings be x1, . . . , xn, where no string is a
substring of another one. The algorithm GREEDY is formu-
lated as follows:

1) I ← {x1, . . . , xn}.
2) if |I| = 1, then stop. The contents of I is the answer.
3) Choose x ∈ I , y ∈ I such that x 6= y and o(x, y) is

maximal possible.
4) I ← I \ {x, y} ∪ {x⊕ y}.



5) Go to 2.

Note that in line 3, in case of several pairs of strings
with the maximum overlap, a single pair has to be chosen.
In this work, the set I is implemented as a list. From all pairs
with overlaps equal to the maximum overlap, the pair with the
minimum index of x is chosen. If there are several pairs with
the same index of x, the one with the minimum index of y is
chosen. The newly built string is prepended in line 4.

D. Problem Description

The GREEDY algorithm is shown in [6] to have a theo-
retical upper bound on the length of the generated common
superstring G of 3.5 · OPT , where OPT is the length of the
shortest common superstring. However, no test cases where
|G| ≥ 2 · OPT were found yet.

We propose an evolutionary algorithm based framework
for hard test case generation. The test case space of the
problem is analysed using single-objective and multi-objective
approaches. In sections III and IV, new quality measures of test
cases are introduced, in sections III-C and IV-C the experiment
results are presented.

II. P-STRINGS

Test data for the shortest common superstring problem
consist of several strings. However, considering strings when
analysing the problem is rather inconvenient.

Consider an example of the test data from [2]: {c(ab)k,
(ba)k, (ab)kc}. This is a pattern of good tests: the optimal
answer is O = c(ab)k+1c, while the greedy algorithm produces
G = c(ab)kc(ba)k. If k → ∞, then |G|/|O| → 2. However,
when searching for different testcases while working with the
strings rather than patterns, one has to limit the values k for
performance reasons. This leads to wrong estimations on the
|G|/|O| ratio. For example, if |G|/|O| = (5 · k + 1)/(2 · k +
2013), then for all k < 4025 the value will be less than 2,
although the asymptotic value is 2.5.

In [7] it is proven that, for a small random perturbation
of any given string, the ratio of answers is 1 + o(1), which
effectively prevents the mutation-only evolutionary algorithms
from success (and makes most evolutionary algorithms per-
form worse). So we need to come up with a solution which
does not use strings as is.

Direct processing of test patterns is preferrable because of
two reasons: they are much shorter than the corresponding
tests, and the asymptotic of the ratio of their lengths can be
computed exactly. We present a kind of patterns called p-
strings which are suitable to run the algorithms atop of them
instead of ordinary strings.

A. Definition

A p-string S(x) = ab1+x·c1
1 . . . abn+x·cn

n is a pattern that for
every integer x > x0 yields a string formed by concatenating
(b1+x ·c1) of characters a1, . . . , (bn+x ·cn) of characters an.
The single element of such a string ab+x·c will be referred to
as a p-character with the base of a and the power of b+x · c.

The parameter x represents a “very big” or “infinite”
positive value. The length of such a string is also a function

of x equal to
∑n

i=1 bi + x · ci. The lengths of the p-strings are
compared in the following way: (b1 + x · c1) > (b2 + x · c2)
if c1 > c2 or c1 = c2 and b1 > b2. Note that, for any length
(b+x ·c), c must be non-negative, and b must be non-negative
if c = 0 and may be of any value if c > 0.

A canonical form of a p-string A(x) is a p-string A′(x)
which yields the same string for every significantly large
integer x and has the minimum number of p-characters.
One can show that to construct a canonical form one needs
to replace all sequences of consecutive p-characters having
the same base ab1+x·c1 , . . . , abk+x·ck with a single character
a(b1+...+bk)+x·(c1+...+ck).

In the rest of the paper the parameter x is the global
parameter for all p-strings under consideration, and we will
further omit the (x) part in the description of p-strings.

A concatenation of two p-strings a and b for the same
parameter is a p-string c = ab in the canonical form which
yields a string which is a concatenation of the strings yielded
by a and b for every possible value of the parameter. To make
a concatenation of two p-strings a and b in the canonical form,
one has to write the p-characters of a and then of b, and then
build a canonical form of the result. One may show that it
is enough to check the last p-character of a and the first p-
character of b and merge them if they have equal bases.

B. P-string Overlaps

One of the main concerns in a shortest common superstring
problem is an overlap o(s, t) of two strings s and t, which is
the length of the longest string z such that s = s′z and t = zt′

for some s′ and t′.

The overlap can be defined for p-strings the same way
using the appropriate definitions for the length, the longest
string and concatenation. The algorithm for overlap computing
should be different, however, because, unlike common strings,
it is possible to split a p-character. For example, the overlap of
two p-strings s = a1+xb2+3·x and t = b7+2·xa5 is (7 + 2 · x),
so that z = b7+2·x, s′ = a1+xbx−5, and t′ = a5.

In this paper we use a simple algorithm for calculating the
overlap of two p-strings: given two strings s and t, consider
every p-character in s, try to align t in the way that the
first p-character of their overlap maps to both the first p-
character of t and the chosen p-character of s, and, from the
succeeded alignments, choose one with the maximal overlap.
This algorithm has the complexity of O(|s| · |t|), which is
suitable for small p-strings.

C. Shortest Common P-superstring

Most known algorithms for computing the (approximate or
exact) shortest common superstring for a set of strings can be
generalized to p-strings, as they rely on the overlap operation,
concatenation and length comparison only. In particular, both
the exact algorithm from Section I-B and the greedy algorithm
from Section I-C, which we use to analyse the problem, may
be generalized without any additional effort.



III. EVOLUTIONARY APPROACH: SINGLE OBJECTIVE

The task of generating a hard test case for the greedy
algorithm can be formulated in terms of p-strings as the
following optimization problem: generate a p-string S such
that, if (A · x + B) is the length of the solution produced by
the GREEDY algorithm and (a · x + b) is the length of the
exact shortest common superstring, the ratio A/a is maximum
possible.

The search space is a set of fixed-sized lists of p-strings
with several restrictions placed on them due to performance
concerns: the maximum number of p-characters, the alphabet
size, and the limitations on the coefficients in the p-characters.

A. Individual Representation and Evolutionary Operators

The representation of a test case as an individual is straight-
forward. The individual is a list of p-strings which has a size
of M . Each p-string has a positive number of p-characters not

exceeding N . For each p-character of these strings abi+ci·x
i the

values of |bi| and |ci| are limited by L, and the set of possible
ais (the alphabet) has the size of A.

The parameters M , N , L, A are set beforehand and kept
constant during the run of an evolutionary algorithm.

A p-character ab+c·x is generated randomly as follows.
The base a is selected uniformly from the alphabet, then the
quotient c is selected uniformly from the range [0;L], then the
quotient b is selected uniformly from the range [0;L] if c = 0,
or [−L;L] otherwise.

After performing some operation on p-strings, the quotients
of their p-characters may exceed L by their absolute value.
Such quotients are returned to the allowed range: if a quotient
is greater than L, it is made equal to L, and if a quotient is
less than −L, it is made equal to −L.

Generation of a new individuals is performed randomly:
M p-strings are generated, each of them receives a uniformly
random length from the range from 1 to N . Each p-character
of these strings is generated randomly as described above. The
p-strings are then converted to their canonical forms.

A mutation is done independently for each p-string in the
individual. First, a type of mutation is selected at random: D
with the probability of 1

4 , I with the probability of 1
4 , R with

the probability of 1
2 .

If the type is D and the number of p-characters in the string
is greater than one, a random p-character from the string is
deleted.

If the type is I and the number of p-characters is less than
N , a random p-character, generated as above, is inserted at a
random place in the string, including the position before and
after the string.

In all other cases a randomly chosen p-character is mutated.
The mutation is done as follows. With the probability of
1
2 the character is generated randomly. Otherwise, with the

probability of 1
5 , the base is replaced by a randomly generated

one. Otherwise, the quotients of the power of the character
are altered by the random value from the range of [−1; 1], and
then the possible out-of-range issues are fixed.

After mutation, the string is turned to the canonical form,
and string correction is performed as described above.

There are two variants of the crossover which are applied
with equal probability. The first variant of the crossover swaps
the p-strings in the individuals as follows. First, the swap
length W is chosen from the range [1,M −2]. Then, the swap
offsets O1 and O2 for the individuals are chosen independently
from the range [0,M−W ]. After that, the sublists of length W
are swapped in the individuals, the sublist of the first individual
is starting at O1 and of the second individual at O2 (the indices
start with zero).

The second variant does the similar thing to the first one,
but with the pairs of strings from the different parents, not
with the lists of strings. Namely, for each index in [0,M − 1]
it selects the p-strings from the parents at this index and swaps
the substrings with equal number of p-characters in these
strings and sets the results at the same index to the children.

The fitness function is straightforward. For an individual
of the form of [X1, . . . , XM ], first the substrings of some
other strings are removed, and then two superstrings are
calculated: the exact shortest common superstring E and the
approximation G computed by the GREEDY algorithm. Let
the length of E be a ·x+ b, and the length of G be A ·x+B.
Then the fitness value for the considered individual is the ratio
A/a.

B. Evolutionary Algorithm

A genetic algorithm is used with the generation size of 100.
The following variation of the tournament selection is used:

1) 2T individuals are selected at random and added to
the list X .

2) If |X | = 1, then the only individual in the list is
returned.

3) The list X is divided into pairs of individuals.
4) From each pair, the best individual is added to X with

the probability of 0.9, otherwise the worst individual
is added.

5) Go to line 2.

The scheme of the genetic algorithm is as follows:

1) The generation is populated by individuals generated
as described in Section III-A.

2) The fitness values of the individuals are computed.
3) If the largest fitness value is greater than or equal to

a threshold value Θ, the algorithm is terminated.
4) The top 5 individuals are promoted to the next

generation.
5) The rest of the next generation is filled using the

following operations:

a) two individuals are selected by tournament
selection with T = 3;

b) they are crossed over;
c) each of the individuals is mutated with the

probability of 0.5.
d) the resulted individuals are added to the next

generation until its size reaches 100.

6) The next generation becomes the current one. Go to
line 2.
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C. Experiments

All the experiments were performed using the following
problem parameters: N = 5, M = 5, L = 20, A = 2.

The experiments with the fitness threshold Θ = 2.0
show that the genetic algorithm finds the input data with the
asymptotic ratio of 2.0 very quickly. In Fig. 1, an example of
the fitness plot is given.

As the fitness of 2.0 is reached very quickly, it is possible
to gather enough statistic data to estimate the performance.
10000 runs were evaluated, for each of them the number of
generations needed to reach the fitness threshold is recorded.
In Fig. 2, the best 97% of the runs are shown. The X axis is
split into intervals of 100 generations wide each. In the Y axis,
the number of runs which fell inside each interval is drawn.

For the best 97% of runs, the mean value of the number
of generations is 351.02, and the median is 229. For all runs,
these numbers are 739.28 and 237, respectively.

It can be seen that the problem of finding a test with the
ratio of lengths equal to 2.0 is an easy task for the genetic
algorithm. However, it seems to be impossible for the genetic
algorithm to overcome this value.

IV. EVOLUTIONARY APPROACH: TWO OBJECTIVES

To further explore the problem, we tried applying the multi-
objective approach. As shown in numerous sources ( [8], [9]),
adding new objectives may increase performance or produce
better results.

A. Second Objective

Recall that the fitness value, which we define here as the
primary objective, is computed as follows: if the length of an

exact answer to the problem is (a ·x+ b) and the length of the
answer given by the GREEDY algorithm is (A · x + B) then
the primary objective is equal to α = A/a.

Consider, once again, the example from [2]: {c(ab)k, (ba)k,
(ab)kc}. The exact answer is O = c(ab)k+1c, and the greedy
answer is G = c(ab)kc(ba)k. The length of the exact answer
is 2 ·k+4, and the length of the greedy answer is 4 ·k+2. We
can determine not only the ratio of the lengths, which is equal
to 2, but also the fact that the greedy answer is six characters
shorter than twice the exact answer. In fact, no tests are known
where the greedy answer is at least twice as long as the exact
answer.

We used two different ways of defining the secondary
objective:

1) the difference between lengths of the greedy answer
and the exact answer times α, which is independent
of x:

D(a, b, A,B) = A·x+B−
A

a
(a · x+ b) =

aB −Ab

a
.

If a = 0, then D = 0 as well.
2) the numerator of the fraction above, which is equal

to:
Z(a, b, A,B) = aB −Ab.

For both secondary objectives, the following theorem
holds:

Theorem 1: If the value of the secondary objective is
positive, then the length of the greedy answer is always bigger
than its asymptotic estimation. If the secondary objective is
negative, then the greedy answer is always shorter than its
estimation. If the secondary objective equals zero, then the
greedy answer is always equal to its estimation.

Proof: For the first variant of the secondary objective, the
theorem statement follows from the semantics of the objective
value. If the greedy answer equals G, the exact answer is E,
and the value of the secondary objective is D, then G = E ·
α + D. So if D > 0, then the greedy answer is longer than
the asymptotic estimation, if D < 0, then it is shorter, and if
D = 0, the greedy answer is equal to its estimation.

For the second variant, consider two cases. In case of a =
0, A = 0 as well, because the input p-strings are independent
of x, so both D and Z are equal to 0 in this case. In case
of a 6= 0, which implies a > 0, the values of D and Z have
equal signs.

B. Evolutionary Algorithm

In this paper, NSGA-II [10] with run-time complexity
improved as in [11] is used as a multi-objective optimization
algorithm. The generation size is set to 1000. Crossover,
mutation and individual generation are performed as described
in Section III-A.

C. Experiments

As the shape of Pareto front for this problem is not known
a priori for any of definitions of the secondary objective, we
performed several runs of NSGA-II for both definitions until
the current Pareto front approximation did not change for some
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time and built the union of the fronts for each objective. The
Pareto front approximation for the first variant is shown on
Fig. 3, and for the second version on Fig. 4.

The best value for the first variant, according to the pri-
mary objective, has the objective values (2,−3) and produces
the following p-strings: {a20x−20b1, b1a20x−20, a20x−19, a19,
a3x+20}.

One can see that the first three strings determine the answer
as the others are their substrings. One can also note that for this
test the string order matters: if the greedy algorithm paired the
first and the third string first, the answer would be optimal.
However, the resolution rule of string pairs, described in
Section I-C, makes the first and the second string overlap first,
thus producing unoptimal answer. According to the second
objective, the length of the greedy answer is three characters
less than twice the length of the optimal answer.

The best value for the second variant, according to the pri-
mary objective, has the objective values (2,−42) and produces
the following strings: {b11x+3, b14x−19a, ab14x−19, b2x−17,
b14x−18}.

V. CONCLUSION

In this paper an evolutionary algorithm based hard test case
generation framework for the shortest common superstring
problem is presented. It uses special string patterns, called

p-strings, instead of ordinary strings. Three quality measures
for test cases — one primary measure and two secondary
measures — were presented, and their optimization was per-
formed by single-objective and multi-objective evolutionary
algorithms.

The single-objective experiment shows that it is very easy
for the genetic algorithm to reach the string length ratio of
2.0. The impossibility of exceeding this ratio supports the
commonly known conjecture that 2.0 is indeed the upper limit
for the string length ratio.

From the two-objective experiments we found a test case
for which the greedy answer is three characters shorter than
twice the length of the optimal answer. This is the best
known test case for the shortest common superstring problem
according to the quality measures described in the paper. The
Pareto front approximations may provide an additional insight
to the nature of the problem.
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