
A First Step towards the Runtime Analysis
of Evolutionary Algorithm

Adjusted with Reinforcement Learning

Maxim Buzdalov, Arina Buzdalova, Anatoly Shalyto
Saint-Petersburg National Research University

of Information Technologies, Mechanics and Optics

49 Kronverkskiy prosp.

Saint-Petersburg, Russia, 197101

Email: {mbuzdalov, abuzdalova, anatoly.shalyto}@gmail.com

Abstract—A first step towards analyzing runtime complexity
of an evolutionary algorithm adaptively adjusted using rein-
forcement learning is made. We analyze the previously proposed
EA + RL method that enhances single-objective optimization by
selecting efficient auxiliary fitness functions. Precisely, Random
Mutation Hill Climber adjusted with Q-learning using greedy
exploration strategy is considered. We obtain both lower and
upper bound for the number of fitness function evaluations
needed for this EA + RL implementation to solve a modified
OneMax problem. It turns out that EA + RL with an inefficient
auxiliary fitness function performs on par with a conventional
evolutionary algorithm, namely in Θ(N logN) fitness function
evaluations, where N is the size of the OneMax problem. In
other words, we show that reinforcement learning successfully
ignores inefficient fitness function. A lower bound for the ε-greedy
exploration strategy for ε > 0 is analyzed as well.

I. INTRODUCTION

The EA + RL method was previously proposed by the

authors of this paper for adaptive selection of auxiliary fit-

ness functions in single-objective evolutionary algorithms [1],

[2]. The selection is performed during the running time of

an evolutionary algorithm (EA) using reinforcement learning

(RL). The auxiliary fitness functions can arise during multi-

objectivization by decomposition [3]–[5], or can be taken

from the application domain [6]–[8]. EA + RL also can be

used to dynamically select helper-objectives [9], [10] in multi-

objective evolutionary algorithms [6], [7].

The method was empirically shown to be efficient in solving

a number of model problems [1], [2], [11], [12], as well as in

applying to a real-world problem [6], [7]. However, there are

no theoretical foundations of this method yet. In this paper

we present the first theoretical result considering the runtime

analysis of EA + RL applied to a modified OneMax problem.

As long as we know, there are several other techniques of

adjusting evolutionary algorithms with reinforcement learning

in different ways (i. e. choosing evolutionary operators or

adjusting real valued parameters, such as mutation rate) [13]–

[16], but there is no runtime analysis of these methods as well.

In reinforcement learning field itself, analyzing computational

complexity is an open problem [17]. There are works on

convergence and convergence rates of reinforcement learning

algorithms [18]–[23], mostly of Q-learning for some special

problems. There is also a huge work on analyzing computa-

tional complexity of evolutionary algorithms [24]. But even if

we know the runtime complexity of a reinforcement learning

algorithm and an evolutionary one, the runtime complexity

of this evolutionary algorithm controlled by reinforcement

learning is still an open question. In this article, a first

step towards analyzing such combination of machine learning

algorithms is made.

II. PREVIOUS RESULTS AND MOTIVATION

In this section we describe the EA + RL method, consider

an example of previous empirical results and give motivation

for the formulation of the theoretical result.

A. EA + RL Method

Firstly, let us describe the concepts of EA + RL in more

detail [1]. Consider a single-objective evolutionary algorithm.

Let us call the fitness function used in this algorithm the target
fitness function. EA + RL method is used to maximize the

target fitness function in less number of generations than the

initial evolutionary algorithm does.

For each population of the evolutionary algorithm, rein-

forcement learning agent selects the most efficient fitness

function from a set, which consists of the target fitness

function and some auxiliary ones. So we use the auxiliary

fitness functions to enhance optimization of the target fitness

function. Generally, there is no prior knowledge about these

functions. Some of them can be supporting, in other words,

selecting these functions speeds up the target fitness function

optimization. Others can be obstructive, which means that

selecting these functions slows down the target fitness function

optimization.

B. Previous Results Example

Consider the following example. The EA + RL method was

applied to generation of tests against solutions of programming

challenge tasks [6], [7], [25]. Here the target fitness function

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $26.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.42

203

2013 12th International Conference on Machine Learning and Applications

978-0-7695-5144-9/13 $31.00 © 2013 IEEE

DOI 10.1109/ICMLA.2013.42

203



was the running time of the solution, since our goal was to

generate performance tests, which made the solution exceed

some predefined time limit. But this fitness function was inef-

ficient, because it is noisy, quantified and platform dependent.

So we implemented some auxiliary fitness functions, namely,

some counters placed in the solution code, that correlate with

the running time of the solution.

The results of the corresponding experiment is shown in the

Table I [6]. T stands for the target fitness function, Q, I , L
are the auxiliary ones. We used a genetic algorithm with each

of these functions and we also applied the EA + RL method

to this algorithm. The run is called successful, if a test that

makes the solution to exceed the time limit is generated.

TABLE I
RESULTS EXAMPLE

Algorithm FFs Success, %
Generations

Mean σ
GA Q 95 3815 3466
GA + RL all 80 5817 6160
GA I 54 12669 12873
GA L 51 13755 14082
GA T 0 – –

Using the target fitness function turned to be completely

inefficient, while using the Q fitness function provided with

good tests in 95 % of runs. So the Q fitness function is a

supporting one. The rest of fitness functions gave moderate

results. However, the key idea of using EA + RL is that

we do not want to test each auxiliary fitness function by

performing a separate run of an evolutionary algorithm. We

just take EA + RL, pass all the functions to it, and it selects

the most efficient ones automatically during the single run

of an evolutionary algorithm. According to the Table I, the

EA + RL was successful in 80% of runs. It manages to select

the efficient fitness functions and allows not to test all of them

separately.

C. Motivation

Generally, we are interested in proving that EA + RL

enhances the runtime complexity of the adjusted evolutionary

algorithm if there is at least one supporting fitness function.

It is also important to prove that EA + RL performs not

worse than an evolutionary algorithm even if there are only

obstructive ones. In this paper we prove that EA + RL

performs equally well with the adjusted evolutionary algorithm

if there is only one auxiliary fitness function and it is an

obstructive one. In other words, we illustrate on a model

problem that EA + RL manages to eliminate influence of an

obstructive fitness function.

III. MODEL PROBLEM AND ALGORITHM

In this section we consider a model problem and an imple-

mentation of EA + RL method used to solve it. Later we will

prove the runtime estimation for this algorithm.

We modify OneMax problem to get a problem with one

target fitness function and one obstructive fitness function. Our

goal is to prove that EA + RL method allows to eliminate

Q-Learning 
Agent

s(t + 1)

r(t + 1)

reward r(t) = 
f
1
(x

t
) - f

1
(x

t-1
)

state s(t) = f
1
(x

t
)

fitness 
function 
(f

0
or f

1
)

RMHC

Fig. 1. RMHC + Q-learning scheme

influence of an obstructive fitness function. In other words,

we will later show for the considered example that EA + RL

implementation with obstructive fitness function performs as

good as a conventional algorithm without an obstructive fitness

function.

A. Modified OneMax Problem

Consider a modified OneMax Problem. There are two fitness

functions: the obstructive fitness function f0 and the target

fitness function f1. The target fitness function f1 is calculated

as number of 1-bits in an individual of length N , while the

obstructive fitness function f0 is calculated as number of 0-

bits, so optimizing f0 decreases f1.

B. RMHC + Q-learning Algorithm

Consider the following EA + RL implementation. We use

the Random Mutation Hill Climber (RMHC) algorithm [5]

for the EA and the Q-learning algorithm [26] for the RL

algorithm. The scheme of the resulting algorithm is shown

in Fig. 1

In this EA + RL implementation an environment state equals

to the number of 1-bits in the current individual generated with

RMHC. So there are N + 1 possible states from s0 to sN .

The immediate reward r equals to the difference of the

target fitness function values calculated on the two individ-

uals, which are consequently generated with RMHC. The Q-

learning algorithm is designed to maximize the total reward:

E[
∑∞

t=0 γ
trt] → max, where γ is a real valued parame-

ter [26].

The efficiency of choosing some fitness function f in the

state s is denoted by Q(s, f). We use the greedy exploration

strategy [26], [27], which means that in the state s the fitness

function with the highest Q(s, f) is chosen.

The pseudocode of the considered algorithm is shown in

the Listing 1.

IV. MAIN RESULT

Theorem 1. Random Mutation Hill Climber controlled with
Q-learning algorithm with greedy exploration strategy solves
modified OneMax problem in Θ(N logN) fitness function
calls.

Proof: The outline of the proof is as follows. First, the

Learning Lemma is formulated and proved. Using this lemma,

we construct a Markov chain of the optimization process

performed with the RMHC + Q-learning algorithm. Then we

estimate lengths of some loops in this chain, which allows us

204204



Algorithm 1 RMHC + Q-learning Algorithm

X ← current individual, vector of N zeros

Q ← transition quality matrix, N × 2, filled with zeros

f1 ← target function: number of ones in an individual

f0 ← obstructive function: number of zeros in an individual

Mutate(X) ← mutation operator: inverts random bit

α ∈ (0; 1), γ ∈ (0; 1) — Q-learning parameters

while f1(X) < N do
s ← f1(X)
Y ← Mutate(X)
f , I: chosen fitness function and its index

if Q(s, 0) > Q(s, 1) then
f ← f0, I ← 0

else if Q(s, 0) < Q(s, 1) then
f ← f1, I ← 1

else
I ← random(0,1), f ← fI

end if
if f(Y ) ≥ f(X) then

X ← Y
end if
r ← f1(X)− s
Q(s, f) ← (1− α)Q(s, f) + α(γ · r +maxj Q(s, fj))

end while

s

s–1

s+1

Q (s , f 1)=0
Q (s , f 0)=0

Q (s , f 1)> 0
Q (s , f 0)=0

Q (s , f 1)=0
Q (s , f 0)< 0

f 1,1� 0

f 0,0�1

f 1,0� 1

f 0,1� 0

Fig. 2. Transitions from a state visited for the first time

to replace this chain with the linearized one. Using the linear

chain, we calculate the runtime of the algorithm. Finally, we

compare the obtained runtime estimation with the runtime of

the conventional Random Mutation Hill Climber and get the

main result.

A. Learning Lemma

First of all, let us formulate the lemma, which will be used

to construct the Markov chain for the considered algorithm.

Lemma 1. Assume that the Q-learning agent visits a state
s and leaves it. Then the optimal fitness function f1 will be
chosen in s in all next visits.

Proof: Consider a state s visited for the first time. For

such state, Q(s, 0) = Q(s, 1) = 0. So either f0 or f1 can be

chosen. In each case, mutation operator can flip either 1-bit

or 0-bit. Consequently, there can be four transitions from the

state s, as illustrated in Fig. 2:

1) Fitness function f0 is chosen, mutation operator flips 0

to 1. Since the mutated individual has lower f0 value,

the algorithm stays in the state s. The reward is zero, Q
values do not change.

2) Fitness function f0 is chosen, mutation operator flips 1

to 0. Since the mutated individual has higher f0 value,

the algorithm moves to the state s − 1. The reward is

negative, Q(s, f0) becomes negative after the update.

3) Fitness function f1 is chosen, mutation operator flips 0

to 1. Since the mutated individual has higher f1 value,

the algorithm moves to the state s + 1. The reward is

positive, Q(s, f1) becomes positive after the update.

4) Fitness function f1 is chosen, mutation operator flips 1

to 0. Since the mutated individual has lower f1 value,

the algorithm stays in the state s. The reward is zero, Q
values do not change.

The Q-learning agent leaves the considered state in the

cases 2, 3. In both cases, the Q-values have different signs

after the update and Q(s, f1) > Q(s, f0). So f1 will be chosen

in the state s during the next visit. The inequality between

Q(s, f1) and Q(s, f0) will not change, since the agent will

receive either positive or zero reward after applying f1 in the

state s. So the optimal fitness function f1 will be chosen in s
in all next visits.

B. Markov Chain
Consider a Markov chain of the optimization process per-

formed with the considered algorithm. The Markov chain is

shown in Fig. 3. The numbers written on the vertexes of the

chain correspond to the number of 1-bits in an individual. We

assume that the first individual is a string of zeros, so the

starting vertex of the chain is marked with a zero.
There are three groups of vertexes in the chain. The first

group consists of vertexes visited for the first time after

visiting some lower vertexes, the second group consists of

vertexes visited after the agent had chosen the obstructive

fitness function f0 and the third group of vertexes corresponds

to recovering after this choice.
The chain is constructed using Lemma 1. The vertexes from

the second and the third groups correspond to the already

visited states. So in this vertexes the agent will always choose

the efficient fitness function and eventually move to the higher

vertexes.

C. Markov Chain Linearization
In this subsection we simplify the obtained Markov chain

by replacing some loops with edges of the same length. The

length of an edge is defined as the expected number of fitness

function evaluations needed to pass this edge. Consider a

typical part of the chain illustrated in Fig. 4. The chosen

fitness functions, as well as mutation results and corresponding

transition probabilities are written on the edges.
Let us calculate the expected number of fitness evaluations

needed to get from the vertex Bi−1 to the vertex Ai+1 through

the vertex Ci.
Fist of all, the expected number of fitness evaluations needed

to get from the vertex Bi−1 to the vertex Ci is evaluated:

E(Bi−1 → Ci) = 1×N − i+ 1

N
+(1+E(Bi−1 → Ci))× i− 1

N

205205



A
0

A
1

A
2

A
N - 1

A
N

B
0

B
1

B
N-2

C
1

C
2

C
N-1

…

…

…

Fig. 3. Markov chain of the optimization process performed with RMHC + Q-
learning

A
i+1

A
i

B
i-1

C
i

f 1,0� 1,
N�i
N

f 1,0� 1,
N�i
2N

( f 1,1� 0� f 0, 0�1) ,
1
2

f 0,1� 0,
i

2 N

f 1,1� 0,
i�1
N

f 1,0� 1,
N�i+ 1
N

f 1,1� 0,
i

N

�

�

Fig. 4. A typical loop from the Markov chain on the Fig. 3

E(Bi−1 → Ci) =
N

N − i+ 1

Then, the expected number of fitness evaluations needed to

get from the vertex Ci to the vertex Ai+1 is evaluated:

E(Ci → Ai+1) = 1× N − i

N
+ (1 + E(Ci → Ai+1))× i

N

E(Ci → Ai+1) =
N

N − i

Finally, we obtain the result by summing up the intermediate

estimations:

E(Bi−1 → Ai+1) = E(Bi−1 → Ci) + E(Ci → Ai+1)

E(Bi−1 → Ai+1) =
N

N − i+ 1
+

N

N − i

Now we can replace the loop with a single edge of a

corresponding length from the vertex Ai to the vertex Ai+1.

The probability of passing this edge is equal to the probability

of choosing the Ai → Bi−1 edge, which is p = i
2N . Once

the edge Ai → Bi−1 is chosen with probability p, its length

equals 1. So the length of the new edge between Ai and Ai+1

is 1+E(Bi−1 → Ai+1) as illustrated in Fig. 5. Replacing each

loop in the same way, we obtain the linear Markov chain.

A
i+1

A
i

p= i

2N ,

length=1+
+ N

N�i+ 1+
N

N�i

p= N�i
2N ,

length=1

p= 1
2 ,

length=1

�

�

Fig. 5. Linearized part of the Markov chain

A
1

A
0

p= 1
2 ,

length=1

p= 1
2 ,

length=1

�

Fig. 6. Two first vertexes of the linearized Markov chain

D. Runtime Analysis

In this subsection we analyze the expected number of fitness

function evaluations needed to get from the first vertex of the

linearized Markov chain to the last one. In other words, we

compute expected runtime of the considered algorithm.

Let Z(i) be the expected number of fitness evaluations

needed to get to the (i+1)-th vertex from the i-th one. Using

the transition probabilities and lengths shown in the Fig. 5,

we obtain the following equation:

Z(i) =
1 + Z(i)

2
+
N − i

2N
+

(
1 +

N

N − i+ 1
+

N

N − i

)
× i

2N

Solving the equation above, we get a closed formula for

Z(i):

Z(i) = 2 +
i

N − i+ 1
+

i

N − i
(1)

Consider the special case of the starting vertex, which is

illustrated in Fig. 6.

Analogically, we solve an equation for Z(0) to get a closed

formula:

Z(0) = 1× 1

2
+ (1 + Z(0))× 1

2

Z(0) = 2

Notice that if we substitute i = 0 to the Eq. 1, we also get

Z(0) = 2. So we can compute the total expected number of

fitness evaluations needed to get from the 0-th vertex to the

N -th vertex as the following sum of Z(i):

TR+Q(N) =
N−1∑
i=0

(
2 +

i

N − i+ 1
+

i

N − i

)
(2)

Now let us estimate the obtained result. Consider the

expected number of fitness function evaluations needed to

206206



solve the conventional OneMax problem using conventional

Random Mutation Hill Climber:

TO(N) =

N−1∑
i=0

(
1 +

i

N − i

)
(3)

TO(N) = Θ(N logN) (4)

Let us analyze the argument of the sum in the Eq. 2:

TR+Q(N) =

N−1∑
i=0

(
2 +

i

N − i+ 1
+

i

N − i

)

1 +
i

N − i
< 2 +

i

N − i+ 1
+

i

N − i
<

< 2 + 2
i

N − i
= 2(1 +

i

N − i
)

Comparing the inequalities above with the runtime of the

conventional RMHC (Eq. 3, 4), we obtain the upper and lower

bounds for the runtime of the considered algorithm:

TO(N) < TR+Q(N) < 2 · TO(N),

TR+Q(N) = Θ(N logN).

So it is finally proved that the expected number of fitness

evaluations needed to solve the OneMax problem with the

RMHC controlled with Q-learning is Θ(N logN).

V. ON THE COMPUTATION TIME OF ε−GREEDY

Q-LEARNING

Previously in this paper, we used the greedy explo-

ration strategy to choose between fitness functions (see Sec-

tion III-B). Now let us consider another popular exploration

strategy called ε-greedy [26], [27]. According to this strategy,

the most efficient action (in our case, fitness function) is

chosen with probability (1 − ε), while with probability ε a

random action (fitness function) is chosen. This strategy should

avoid stopping in local optima [26], but is it efficient for the

considered problem?

In this section we construct a lower bound on the running

time of the same algorithm as in Section IV, but with the use

of ε-greedy exploration strategy, and show that it grows at

least exponentially in N as soon as ε > 0.

To estimate the lower bound, we assume that ε-greedy Q-

learning algorithm has learned the most efficient action in

each state before the algorithm starts. That is, the algorithm

will choose f1 with the probability of (1 − ε) and f0 with

the probability of ε. Note that in a real implementation the

probability for f1 will always be less than the “ideal” one.

Let, as above, Z(i) be the expected number of fitness

evaluations needed to get to the i+ 1-th vertex from the i-
th one. For Z(0), every mutation flips 0 to 1 and increases

target fitness value. So we go from vertex 0 to vertex 1 with

the probability of (1 − ε) and remain in vertex 0 with the

probability of ε. Thus, Z(0) = (1− ε) + ε · (1 +Z(0)), from

which by solving an equation we get:

Z(0) =
1

1− ε
. (5)

In vertex i, i > 0, mutation flips 0 to 1 with the probability

of (n− i)/n and 1 to 0 with the probability of i/n. Indepen-

dently, we select f1 with the probability of (1−ε) and f0 with

the probability of ε. So we have four cases:

1) 0 to 1, f0: the probability is εn−i
n , we remain in vertex i;

2) 0 to 1, f1: the probability is (1 − ε)n−i
n , we go from

vertex i to vertex (i+ 1);
3) 1 to 0, f0: the probability is ε i

n , we go from vertex i to

vertex (i− 1);
4) 1 to 0, f1: the probability is (1− ε)n−i

n , we remain in

vertex i.

In the third case, the fitness is decreased. However, we know

by induction that the expected number of steps from vertex

(i− 1) back to i is Z(i− 1). So the equation for Z(i) has the

following form:

Z(i) =
(1− ε)(n− i)

n
+

ε× i

n
(1 + Z(i− 1) + Z(i)) +

+

(
(1− ε)× i

n
+

ε× (n− i)

n

)
(1 + Z(i))

which is simplified to

Z(i) =
n+ ε× i× Z(i− 1)

(1− ε)× (n− i)
(6)

As follows from Eq. 5, 6, the expected number of fitness

evaluations for ε-greedy Q-learning is:

TR+εQ(N) =
1

1− ε
+

N−1∑
n=1

Z(n). (7)

We have not found a closed expression for both TR+εQ(N)
and its asymptotic behavior yet. However, we evaluated it on

several values of N and ε. The results are shown in Table II

together with the exact values for ε = 0.

TABLE II
VALUES OF TR+εQ(N) FOR DIFFERENT N AND ε: EXACT FOR ε = 0,

LOWER BOUNDS FOR ε > 0

ε\N 4 16 64 256

0.0 1.58× 101 9.66× 101 5.49× 102 2.89× 103

0.1 1.12× 101 1.00× 102 1.05× 104 5.37× 1012

0.2 1.42× 101 2.75× 102 8.56× 106 3.27× 1025

0.3 1.89× 101 1.27× 103 2.84× 1010 1.52× 1040

0.4 2.71× 101 1.01× 104 4.04× 1014 1.56× 1057

0.5 4.37× 101 1.42× 105 3.75× 1019 2.32× 1077

0.6 8.34× 101 4.07× 106 4.95× 1025 1.25× 10102

It can be seen in the table that for ε > 0 the growth of lower

bounds with N is close to an exponent. By trial and error we

acquired an estimation TR+εQ(N) ≈ 4ε× eN logN/N which

holds with 10% of relative error for nearly all table entries.

Compared to Θ(N logN) for ε = 0, this clearly shows that

ε-greedy exploration strategy is inefficient for the OneMax

model problem.

VI. CONCLUSION

We analyzed EA + RL method, which was empirically

shown to be effective for a number of model problems and

a real-world application in previous research. We proved that

207207



Random Mutation Hill Climber controlled by Q-learning with

greedy exploration strategy solves the modified OneMax prob-

lem equally well with the conventional evolutionary algorithm

without an obstructive fitness function, namely in Θ(N logN)
fitness function evaluations. We also analyzed the lower bound

for the ε-greedy exploration strategy for ε > 0.

In this work a first step towards better theoretical under-

standing of how reinforcement learning adjusts evolutionary

algorithms is made. Further work should involve analyzing

broader range of evolutionary algorithms (first of all, (1 + 1)-
evolutionary strategy), as well as reinforcement learning al-

gorithms. It is also very important to formulate a model

problem with a supporting fitness function and show that

EA + RL outperforms the adjusted evolutionary algorithm on

this problem. The long-term goal is to obtain more general

results for class of problems and algorithms, as well as to

work out a theoretical framework for the runtime analysis of

evolutionary algorithms adjusted with reinforcement learning

in different ways.

VII. ACKNOWLEDGMENTS

The research was partially supported by the Ministry

of Education and Science of Russian Federation in the

framework of the federal program“Scientific and scientific-

pedagogical personnel of innovative Russia in 2009-2013”

(contract 16.740.11.0455, agreement 14.B37.21.0397),by the

University ITMO development program in 2012-2018 and by

the University ITMO research project 610455. The authors

also would like to thank Fedor Tsarev for his useful ideas.

REFERENCES

[1] A. Buzdalova and M. Buzdalov, “Increasing efficiency of evolutionary
algorithms by choosing between auxiliary fitness functions with rein-
forcement learning,” in ICMLA (1). IEEE, 2012, pp. 150–155.

[2] A. Afanasyeva and M. Buzdalov, “Optimization with auxiliary criteria
using evolutionary algorithms and reinforcement learning,” in Proceed-
ings of 18th International Conference on Soft Computing MENDEL
2012, Brno, Czech Republic, 2012, pp. 58–63.

[3] J. Handl, S. Lovell, and J. Knowles, “Multiobjectivization by decompo-
sition of scalar cost functions,” in Parallel Problem Solving from Nature
PPSN X, ser. Lecture Notes in Computer Science, G. Rudolph, T. Jansen,
S. Lucas, C. Poloni, and N. Beume, Eds. Springer Berlin Heidelberg,
2008, vol. 5199, pp. 31–40.

[4] F. Neumann and I. Wegener, “Can single-objective optimization profit
from multiobjective optimization?” in Multiobjective Problem Solving
from Nature, ser. Natural Computing Series, J. Knowles, D. Corne,
K. Deb, and D. Chair, Eds. Springer Berlin Heidelberg, 2008, pp.
115–130.

[5] J. D. Knowles, R. A. Watson, and D. Corne, “Reducing local optima
in single-objective problems by multi-objectivization,” in Proceedings
of the First International Conference on Evolutionary Multi-Criterion
Optimization, ser. EMO ’01. London, UK: Springer-Verlag, 2001, pp.
269–283.

[6] M. Buzdalov and A. Buzdalova, “Adaptive selection of helper-objectives
for test case generation,” in 2013 IEEE Conference on Evolutionary
Computation, vol. 1, June 20-23 2013, pp. 2245–2250.

[7] M. Buzdalov, A. Buzdalova, and I. Petrova, “Generation of Tests for
Programming Challenge Tasks Using Multi-Objective Optimization,” in
GECCO (Companion), C. Blum and E. Alba, Eds. ACM, 2013, pp.
1655–1658.

[8] D. Greiner, J. Emperador, G. Winter, and B. Galvan, “Improving
computational mechanics optimum design using helper objectives: An
application in frame bar structures,” in Evolutionary Multi-Criterion
Optimization, ser. Lecture Notes in Computer Science, S. Obayashi,
K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, Eds. Springer Berlin
Heidelberg, 2007, vol. 4403, pp. 575–589.

[9] M. T. Jensen, “Helper-objectives: Using multi-objective evolutionary
algorithms for single-objective optimisation: Evolutionary computation
combinatorial optimization,” Journal of Mathematical Modelling and
Algorithms, vol. 3, no. 4, pp. 323–347, 2004.

[10] D. F. Lochtefeld and F. W. Ciarallo, “Helper-objective optimization
strategies for the job-shop scheduling problem,” Applied Soft Computing,
vol. 11, no. 6, pp. 4161 – 4174, 2011.

[11] A. Afanasyeva and M. Buzdalov, “Choosing best fitness function with
reinforcement learning,” in Proceedings of the Tenth International Con-
ference on Machine Learning and Applications, ICMLA 2011, vol. 2.
Honolulu, HI, USA: IEEE Computer Society, 2011, pp. 354–357.

[12] A. Buzdalova and M. Buzdalov, “Adaptive selection of helper-objectives
with reinforcement learning,” in ICMLA (2). IEEE, 2012, pp. 66–67.

[13] A. E. Eiben, M. Horvath, W. Kowalczyk, and M. C. Schut, “Rein-
forcement learning for online control of evolutionary algorithms,” in
Proceedings of the 4th international conference on Engineering self-
organising systems ESOA’06. Springer-Verlag, Berlin, Heidelberg,
2006, pp. 151–160.

[14] S. Müller, N. N. Schraudolph, and P. D. Koumoutsakos, “Step size
adaptation in evolution strategies using reinforcement learning,” in
Proceedings of the Congress on Evolutionary Computation. IEEE,
2002, pp. 151–156.

[15] Y. Sakurai, K. Takada, T. Kawabe, and S. Tsuruta, “A method to control
parameters of evolutionary algorithms by using reinforcement learning,”
in Signal-Image Technology and Internet-Based Systems (SITIS), 2010
Sixth International Conference on, 2010, pp. 74–79.

[16] J. E. Pettinger and R. M. Everson, “Controlling genetic algorithms with
reinforcement learning,” in Proceedings of the Genetic and Evolutionary
Computation Conference, ser. GECCO ’02. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002, pp. 692–.

[17] A. Gosavi, “Reinforcement learning: A tutorial survey and recent
advances,” INFORMS Journal on Computing, vol. 21, no. 2, pp. 178–
192, 2009.

[18] C. Watkins and P. Dayan, “Technical note: Q-learning,” Machine Learn-
ing, vol. 8, no. 3-4, pp. 279–292, 1992.

[19] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, “Con-
vergence results for single-step on-policyreinforcement-learning algo-
rithms,” Mach. Learn., vol. 38, no. 3, pp. 287–308, Mar. 2000.

[20] C. Szepesvári, “The asymptotic convergence-rate of q-learning,” in
Proceedings of the 1997 conference on Advances in neural information
processing systems 10, ser. NIPS ’97. Cambridge, MA, USA: MIT
Press, 1998, pp. 1064–1070.

[21] M. Kearns and S. Singh, “Finite-sample convergence rates for q-learning
and indirect algorithms,” in Proceedings of the 1998 conference on
Advances in neural information processing systems II. Cambridge,
MA, USA: MIT Press, 1999, pp. 996–1002.

[22] E. Even-Dar and Y. Mansour, “Learning rates for q-learning,” J. Mach.
Learn. Res., vol. 5, pp. 1–25, Dec. 2004.

[23] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman,
“PAC Model-free Reinforcement Learning,” in Proceedings of the 23rd
International Conference on Machine Learning (ICML 2006), 2006, pp.
881–888.

[24] P. S. Oliveto, J. He, and X. Yao, “Time complexity of evolutionary
algorithms for combinatorial optimization: A decade of results,” Interna-
tional Journal of Automation and Computing, vol. 4, no. 3, pp. 281–293,
2007.

[25] M. Buzdalov, “Generation of Tests for Programming Challenge Tasks
Using Evolution Algorithms,” in Proceedings of the 2011 GECCO
Conference Companion on Genetic and Evolutionary Computation, New
York, US, ACM, 2011, pp. 763–766.

[26] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[27] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
Learning: A Survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

208208


