
Increasing Efficiency of Evolutionary Algorithms by
Choosing between Auxiliary Fitness Functions with

Reinforcement Learning

Arina Buzdalova
St. Petersburg National Research University

of Information Technologies, Mechanics and Optics

49 Kronverkskiy prosp.

Saint-Petersburg, Russia, 197101

Email: abuzdalova@gmail.com

Maxim Buzdalov
St.Petersburg National Research University

of Information Technologies, Mechanics and Optics

49 Kronverkskiy prosp.

Saint-Petersburg, Russia, 197101

Email: mbuzdalov@gmail.com

Abstract—In this paper further investigation of the previously
proposed method of speeding up single-objective evolutionary
algorithms is done. The method is based on reinforcement
learning which is used to choose auxiliary fitness functions. The
requirements for this method are formulated. The compliance
of the method with these requirements is illustrated on model
problems such as Royal Roads problem and H-IFF optimization
problem. The experiments confirm that the method increases the
efficiency of evolutionary algorithms.

I. INTRODUCTION

This paper is dedicated to improvement of the efficiency of

single-objective evolutionary computation. Usually the aim of

the evolutionary algorithms (EA) is to find an individual that

maximizes the objective, or the fitness function in terms of

evolutionary computation.

Sometimes additional fitness functions can be used in order

to enhance the efficiency of an optimization algorithm. For

example, such approach is presented in [1], where some single-

objective optimization problems are multi-objectivised and

solved with various multi-objective evolutionary algorithms

(MOEAs) [2]. This approach allows to avoid local optima and

also increases the diversity of individuals [3]. It should be

noted that the additional objectives are specially developed

and are known to have some useful qualities. Developing

such objectives, also known as helper-objectives or helpers,

and choosing the most appropriate ones is a sophisticated

problem [3].

Additional fitness functions can also be provided by the

object domain [4]. In this case we do not have any prior

knowledge about their properties. Some of them may be

useful at different stages of single-objective optimization, but

it is unknown which fitness function should be used actually.

So it is important to have some instrument that allows to

automatically choose the optimal fitness function.

In this paper, a method of increasing the efficiency of a

single-objective EA by choosing between some additional, or

auxiliary, fitness functions is investigated. The objective to be

maximized is called the target fitness function. The function

that is optimized at each particular optimization stage is

chosen dynamically from the set of auxiliary fitness functions

during the EA run. The proper choice leads to increase of

the target fitness function. There is no prior knowledge about

the auxiliary fitness functions properties. We do not aim to

maximize them, they are just used to increase the efficiency

of the target fitness function optimization.

The method being investigated was previously described

in [5], [6]. In this article we formulate some formal require-

ments for this method and check its ability to ignore obstruc-
tive fitness functions. Choosing such functions for optimization

can lead to decrease of the target fitness function. Note

that multi-objective algorithms are not able to fully ignore

obstructive fitness functions as long as they are designed to

maximize all the objectives. This assumption is confirmed in

the present article with experimental results of solving a model

problem.

The choice of the optimal auxiliary fitness functions is

made with reinforcement learning (RL) [7]. The method will

be further referred to as EA + RL. To denote the particular

applications of the method, we use a notation A+L where

A is the name of the used EA and L is the particular

reinforcement learning method. For example, the name of the

genetic algorithm (GA) guided with Q-learning is GA + Q-
learning. It can be seen as a method of “on-the-fly” EA

adjusting. To our knowledge, in other EA-adjusting methods

some fixed fitness function is usually tuned [8], [9]. What is

more, RL applicability for EA adjusting is not investigated yet.

There are few works that explore adjusting of such parameters

as probabilities of applying evolutionary operators or some

quantitative properties of individuals generation using RL [9],

[10]. This work continues investigation of RL applicability for

adjusting fitness functions in EAs after [5], [6].

In the next section of this article the EA + RL method is de-

scribed in more details. Then the requirements for this method

are formulated. In order to formulate them, the efficiency mea-

sure is defined and some auxiliary functions classification is

introduced. After that, two experiments with different auxiliary

2012 11th International Conference on Machine Learning and Applications

978-0-7695-4913-2/12 $26.00 © 2012 IEEE

DOI 10.1109/ICMLA.2012.32

150

2012 11th International Conference on Machine Learning and Applications

978-0-7695-4913-2/12 $26.00 © 2012 IEEE

DOI 10.1109/ICMLA.2012.32

150

2012 11th International Conference on Machine Learning and Applications

978-0-7695-4913-2/12 $26.00 © 2012 IEEE

DOI 10.1109/ICMLA.2012.32

150

function types are described. Both the experiments involve

obstructive fitness functions. The results of the experiments

confirm fulfillment of a part of the requirements. Then all the

results obtained with EA + RL are reviewed and it is shown

that the EA + RL is able to fulfill all the requirements. Finally,

some conclusions are made.

II. METHOD DESCRIPTION

The EA + RL method is based on guiding an EA by choos-

ing fitness functions with a RL algorithm. It is implied that

there are the target fitness function that should be maximized

by the EA and a set of auxiliary fitness functions.

Recall that RL algorithms are designed to find an optimal

behavioral strategy in an interactive environment. An agent

chooses an action, applies it to the environment and receives

the reward for this action, as well as some representation

of the environment state. The goal is to maximize the total

reward [7].

In our method the EA is considered as the environment. The

action is to choose the fitness function to be used. Either the

target fitness function or an auxiliary one can be chosen. The

fitness function is chosen each time when a next generation

of the EA should be evolved. The reward is based on the

difference of the target fitness function values in two sequential

generations.

It is proved for a number of RL algorithms that the

optimal strategy is eventually found and the total reward is

maximized [7], [11]. So the proposed method maximizes the

total target fitness difference. In the following subsections

some aspects of the method will be described more formally.

A. Optimization problem with auxiliary fitness functions

Consider the formulation of the optimization problem with

auxiliary fitness functions that is solved with the EA + RL

method. Let W be a discrete search space. Denote all accept-

able solutions contained in the search space by X , X ⊆ W .

Consider the target fitness function g : W → R.
Consider an auxiliary set H consisting of k auxiliary fitness

functions: H = {hi(x)}ki=1, hi : W → R.
The problem is to maximize the target fitness function using

the auxiliary fitness functions to speed up the optimization

process if it is possible: g(x)→ maxx∈X , X ⊆W.
The solution of the problem is x∗ ∈ X : g(x∗) ≥ g(x), ∀x ∈

X.
Note that there is no prior knowledge about an auxil-

iary fitness function properties. We do not develop auxiliary

functions, they are already given. So the proposed method

should be able to deal with an arbitrary set of auxiliary fitness

functions.

B. Reinforcement learning task

Let us briefly describe the problem of increasing the effi-

ciency of EA as the RL task [7]. The more detailed description

can be found in work [6].

Let x be an individual evolved by the EA. Denote the

i-th generation by Gi. The set of actions A corresponds

to the set of all fitness functions, consisting of g — the

target fitness function and the elements of H — the set of

auxiliary fitness functions. Taking an action means choosing

some fitness function fi ∈ A to be used in the generation Gi.

Consider the best individual contained in the Gi in terms of

the currently chosen fitness function: zi = argmaxx∈Gi
fi(x).

Also consider a fitness difference in two sequential genera-

tions: Δ(f, i) = f(zi)−f(zi−1)
f(zi)

, f ∈ A.
We map the generations of individuals to the states of the

environment. The state si corresponding to the generation Gi

is a vector of criteria f ∈ A sorted in descending order of the

Δ(f, i) values: si = 〈f1, f2, . . . fk+1〉|Δ(f1, i) ≥ Δ(f2, i) ≥
. . .Δ(fk+1, i). If Δ(fa, i) is equal to Δ(fb, i), then fa, fb are

placed in some predefined order.

Finally, the reward function R : S × A → {0, 1
2 , 1}, that is

calculated after choosing the fitness function fi in the state

si−1 and generating Gi, is defined:

R(si−1, fi) =

⎧⎪⎨
⎪⎩

1 if g(zi)− g(zi−1) > 0,
1
2 if g(zi)− g(zi−1) = 0,

0 if g(zi)− g(zi−1) < 0.

Note that the reward depends on the difference between the

target fitness of the best individuals at sequential generations

and is the highest when the target fitness increases.

III. REQUIREMENTS FOR THE METHOD EFFICIENCY

In this section the requirements for the developed method

are formulated. They are based on the auxiliary fitness func-

tions classification, that divides the fitness functions into

supporting and obstructive ones. The aim of the method

is to increase the efficiency of the EA if it is possible.

So the efficiency measure is suggested for the evolutionary

algorithms.

A. Efficiency measure

First of all, we should formulate the efficiency measure

for the evolutionary algorithms. We limit the number of

generations that can be evolved. The optimization is performed

until the optimal solution is found or the generations limit is

reached. The efficiency measure is equal to the number of

actually evolved generations. The smaller it is, the higher is

the efficiency of the EA. If the generations limit is reached, but

the optimal solution is not found, the EA is found ineffective.

B. Auxiliary fitness functions classification

Let us divide auxiliary fitness functions in two groups. The

first group is supporting fitness functions. When they are being

optimized, the target fitness function grows more rapidly. The

rest of fitness functions are obstructive ones. If they are being

optimized, the target fitness function can slow its growth or

even start to decrease. If target fitness function behavior does

not change, the auxiliary fitness function being optimized is

also considered to be obstructive.

Notice that there can be three possible configuration types

of the auxiliary set:

151151151

1) obstructive only: there are no supporting fitness func-

tions, but at least one obstructive;

2) supporting only: there is at least one supporting fitness

function and no obstructive ones;

3) supporting and obstructive: there is at least one fitness

function of each type.

C. List of requirements

The requirements for the developed EA + RL method

according to the possible configurations of the auxiliary set

are the following:

1) for the obstructive only auxiliary set, EA + RL efficiency

should be asymptotically equal to that of the original

EA;

2) for the supporting only auxiliary set, EA + RL should

asymptotically outperform the original EA;

3) for the supporting and obstructive auxiliary set,

EA + RL should also asymptotically outperform the

original EA;

4) (dynamic requirement) EA + RL should respond to

changing conditions of the auxiliary fitness functions.

In other words, the EA + RL should always outperform

the EA when there is at least one supporting fitness function,

and it should never be asymptotically worse. It also should

be able to work under conditions of auxiliary fitness functions

with changing properties. It means that a function may be both

supporting or obstructive at different optimization stages.

EA + RL compliance with the requirements 2–4 is already

illustrated in [5], [6] and also briefly presented in the last

section. Requirement 1, as well as the requirement 3, which

are associated with obstructive auxiliary functions, are in-

vestigated further in the present paper. Two model problems

are taken and obstructive fitness functions are added to their

formulations. The first model problem, Royal Roads, is used

to illustrate EA + RL ability to ignore the obstructive function.

It corresponds to the first requirement. The second model

problem, H-IFF, is used to illustrate EA + RL ability to choose

between the supporting fitness functions and obstructive one.

It demonstrates fulfillment of the third requirement.

IV. PROBLEM WITH OBSTRUCTIVE FUNCTION

In this section a problem with auxiliary set of obstructive
only type is described. It is showed that EA + RL performs

equally good with EA despite the presence of the obstructive

function, so it fulfills the corresponding requirement.

A. Royal Roads problem

Consider the Royal Roads model problem [12]. In its

original formulation there is only one target fitness function

f . The individuals are bit strings of a fixed length l, which are

split into blocks of equal length b. Count the number of blocks

completely filled with ones in an individual, let it be n. The

value of the target fitness function f calculated on such an

individual is bn. In other words, the target fitness function is

the number of blocks filled with ones multiplied by the length

of a block.

Now let us construct an auxiliary set consisting of only

one obstructive fitness function. This function θ calculates the

number of zeros in an individual. Notice that increase of θ
leads to decrease of f , so θ is an obstructive fitness function.

Notice that it is easier to optimize linear function θ than to

optimize piecewise constant function f , that makes it more

risky to use this obstructive function. So, the auxiliary set is

H = {θ}.
B. Experiment description

During the experiment, the original Royal Roads problem

and the Royal Roads problem with an obstructive auxiliary

fitness function were solved by a number of algorithms. The

length of an individual was l = 64 and the length of a

block was b = 8. Each algorithm were run 50 times with

its parameters fixed in order to gather statistics. Each run was

performed until the optimal solution (the string of one-bits)

was found or the steps limit of 500000 steps were reached.

The parameter values of the algorithms were chosen manually

during the preliminary experiment.

The original Royal Roads problem with target fitness func-

tion f was solved by (1 + 1) evolutionary strategy (ES). There

was one individual in each generation. A single child was

evolved at each step by flipping one randomly chosen bit.

Then the parent was replaced with the child, if the child’s

fitness were higher than the parent’s one.

The problem with the target fitness function f and the

obstructive auxiliary function θ was solved with the same evo-

lution strategy adjusted by different kinds of RL algorithms.

The parameter values used in these algorithms are shown in

the Table I.

In R-learning algorithm [13] ε-greedy exploration strat-

egy [7] was used. It chose an arbitrary fitness function with

probability of ε and the function with the maximal estimated

“quality” with probability of 1−ε. In Q-learning algorithm [7]

greedy strategy was used, so it always chose the fitness

function with the maximal estimated “quality”. Both greedy

and ε-greedy strategies were tested during the preliminary

experiment and the ones that provided the corresponding algo-

rithms with the highest efficiency were chosen. In the Delayed

Q-learning algorithm a special safe exploration strategy is

used [11], that is a part of this algorithm.

As it is shown in the next section, Delayed Q-learning

algorithm appeared to be the most effective. So an additional

experiment with individual lengths l = 128, 256, 512, 1024
was performed using this algorithm.

C. Experiment results

The results of the experiment are shown in the Table II.

The runs in which the optimal solution (the string of all one-

bits) was found are called successful. In the column “Success”

the percent of successful runs is specified. The “Average

steps” column shows the average number of generations in

the successful runs. For the runs during which the optimal

solution was not evolved, the number of steps is denoted by

the infinity sign.

152152152

TABLE I
RL PARAMETERS USED IN SOLVING ROYAL ROADS

Parameter Description Value

Q-learning [7]
α learning rate 0.01
γ discount factor 0.1
R-learning [13] (ε-greedy)
α learning rate for reward ρ 1
β learning rate for R-values 0
ε exploration probability 0.001
Delayed Q-learning [11]
m update period 50
γ discount factor 0.1
ε bonus reward 0.2

TABLE II
RESULTS OF SOLVING ROYAL ROADS WITH VARIOUS ALGORITHMS,

INDIVIDUAL LENGTH = 64

Algorithm Success Average
steps

Max
steps

Min
steps

σ

Royal Roads problem
(1+1) ES 100% 6913.28 16033 2439 2925.07

Royal Roads problem with obstructive fitness function
(1+1) ES + Delayed 88% 8365.52 ∞ 3982 3216.13
(1+1) ES + R-learning 100% 69881.74 289936 5254 67990.07
(1+1) ES + Q-learning 24% 6964.17 ∞ 3012 2256.70

The (1+1) ES + Delayed Q-learning appeared to be the

most effective EA + RL algorithm. It was successful in

88% runs with the average number of steps comparable with

the number of steps in EA algorithm without obstructive

fitness functions. Conceivably, the experience gathered by

the Delayed Q-learning algorithm allowed it to consider the

obstructive function as profitless and not to choose it. At the

same time R-learning with ε-greedy exploration strategy was

unable to eliminate the use of an obstructive fitness function

because it was choosing an obstructive fitness function with

probability of 1
2ε. Notice that the Q-learning algorithm that

performed in a greedy way was mostly unsuccessful. It can

be explained by the fact that it had less chances to fully explore

the environment. So the Delayed Q-learning used to combine

exploration and exploitation in the most efficient way.

TABLE III
RESULTS OF SOLVING ROYAL ROADS WITH VARIOUS LENGTHS

Length Success Average
steps

Max
steps

Min
steps

σ

(1 + 1) ES without obstructive fitness function
64 100% 6913.28 16033 2439 2925.07
128 100% 15044.62 29470 8750 4714,94
256 100% 37419.64 65574 18428 12805,84
512 100% 87982.58 160933 39521 25676.64
1024 100% 216750.30 390530 132807 56050.36

(1+1) ES + Delayed Q-learning with obstructive fitness function
64 88% 8365.52 ∞ 3982 3216.13
128 96% 17081,19 ∞ 6967 5423.95
256 100% 40179,80 68589 21805 12739.42
512 100% 92705.12 169707 58841 22133.56
1024 100% 212631,84 361548 128803 48220.06

The results of the second part of the experiment are shown

in Table III. The EA and EA + Delayed Q-learning efficiency

was measured on different individual lengths. The results

confirm that the EA + Delayed Q-learning is asymptotically

equal to the EA. So the requirement for the obstructive only
auxiliary set is fulfilled.

V. PROBLEM WITH SUPPORTING AND OBSTRUCTIVE

FUNCTIONS

In this section, the efficiency of EA + RL on a model

problem with auxiliary set consisting of functions of both

supporting and obstructive types is investigated. It is exper-

imentally shown that in this case the EA + RL algorithm

outperforms the EA despite the presence of an obstructive

fitness function.

A. H-FF optimization problem

Originally, the H-IFF function [1] is used to test genetic

algorithms. Its target fitness function formula f is given in

(1), where B is a bit string individual, BL and BR are its left

and right halves respectively.

f(B) =

⎧⎪⎨
⎪⎩

1 if |B| = 1,

|B|+ f(BL) + f(BR) if ∀i{bi = 0}‖∀i{bi = 1},
f(BL) + f(BR) otherwise.

(1)

H-IFF optimization problem can be multi-objectivized in

order to avoid getting stuck in local optima while solving

it with single-objective evolutionary algorithms [1]. Multi-

objectivized H-IFF optimization problem is called MH-IFF.

It can be efficiently solved with multi-objective evolutionary

algorithms. Additional criteria corresponding to the MH-IFF

problem are f0 and f1 (2).

fk(B) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if |B| = 1 and b1
= k,

1 if |B| = 1 and b1 = k,

|B|+ fk(BL) + fk(BR) if ∀i{bi = k},
fk(BL) + fk(BR) otherwise.

(2)

Let us construct the auxiliary set in order to solve H-IFF

with EA + RL. The supporting functions are f0 and f1. It

is showed in [1] that when they are optimized, the better

solutions for the f are found.

Now we add an obstructive fitness function θ to the

described auxiliary set. It counts the number of overlaps

with a bit mask of alternating ones and zeros: 1010 . . . 10.

Optimizing such function destroys blocks of equally valued

bits searched in the H-IFF problem. An experiment of dealing

with this function and the experiment results are described in

the following sections.

B. Experiment description

Three variations of the H-IFF problem were solved with dif-

ferent algorithms. Firstly, original H-IFF without any auxiliary

functions was optimized with (1 + 5) evolution strategy (ES).

The corresponding mutation operator flipped one randomly

chosen bit of each individual.

153153153

TABLE IV
H-IFF OPTIMIZATION RESULTS

Algorithm Best fit-
ness

Average
fitness

σ Successful
runs

H-IFF problem
(1+5) ES 216 179.07 16.99 0%

H-IFF problem with supporting fitness functions
(1+5) ES + R-learning 448 448.00 0.00 100%
PESA-II 448 448.00 0.00 100%

H-IFF problem with supporting and obstructive fitness functions
(1+5) ES + R-learning 448 439.45 36.32 92%
PESA-II 312 277.83 20.07 0%

Secondly, two supporting auxiliary fitness functions f0, f1
were added. The corresponding MH-IFF problem was solved

with a multi-objective evolutionary algorithm PESA-II [14]

and the proposed ES + R-Learning method that adjusted

the same (1 + 5) evolution strategy. The parameters of R-

learning algorithm were α = 0.5 and β = 0.35 [13]. The

ε-greedy exploration strategy with ε = 0.25 was used. All

parameter values were chosen manually during the preliminary

experiment.

Finally, the obstructive fitness function θ was added to the

auxiliary set and the corresponding problem was solved with

PESA-II and ES + R-learning again.

The length of an individual in all cases was 64 bits. Notice

that the optimal fitness of such individual is 448. 30 runs of

each algorithm were performed. In each run 500000 fitness

calculations were made. The statistics shown further were

based on the best individuals from the last generation of each

run.

C. Experiment results

The experiment results of optimizing H-IFF with different

auxiliary sets are presented in Table IV. The runs in which

the ideal individual of fitness 448 was evolved are called

successful. (1 + 5) ES, that used no auxiliary fitness functions,

appeared to be unsuccessful in all runs.

Applying the (1 + 5) ES + R-learning variation of the

proposed method with supporting auxiliary fitness functions

led to the increase of the ES efficiency and allowed to evolve

an ideal individual in each run. So the proposed method

fulfilled the requirement corresponding to the supporting only
auxiliary set. PESA-II also appeared to be effective in this

case, that is in accordance with [1], where PESA algorithm

was used for the same problem.

In the last two rows of the Table IV the auxiliary set with

an obstructive function is considered. This set also includes

the supporting auxiliary fitness functions from the previous

case. The proposed (1 + 5) ES + R-learning method is still

much more effective than the (1 + 5) ES evolving an ideal

individual in 92% of runs. So it fulfills the requirement for

the supporting and obstructive auxiliary set.

Notice that PESA-II is not effective any more in the last

part of the experiment. No ideal individual was evolved with

it. Such results can be explained with the fact that PESA-

II tried to optimize all the auxiliary fitness functions as long

Fig. 1. Results for the auxiliary set with dynamically varying properties

as it is a multi-objective algorithm. In this case optimizing

of obstructive fitness function led to decrease of the target

one. By contrast, the proposed EA + RL method was able

to ignore the obstructive fitness function, because it learned

that its application is profitless. It can be inferred that the

proposed method is able to choose between the auxiliary

fitness functions in order to enhance the optimization of

the target one. So the proposed method can be more useful

than multi-objectivization techniques when we have incom-

plete knowledge of the auxiliary fitness functions, or helper-

objectives [3].

VI. RESULTS OVERVIEW

Let us sum up all the results (including the ones from

the previous works) in accordance with the requirements

formulated in the present paper. The method was applied to

a number of model problems. In all the problems individuals

were encoded as bit strings.

The very first model problem used to test the proposed

method was the problem described in [5]. It has auxiliary

functions which can be both obstructive and supporting de-

pending on the optimization stage. There are two optimization

stages. The results of solving this problem are illustrated in

Fig. 1. EA + RL manages to choose the most efficient auxiliary

fitness function at both optimization stages. The proposed

method noticeably outperforms the genetic algorithm used to

optimize the target fitness function. The crossover operator in

this algorithm exchanges parts of individuals with shift. The

mutation operator flips each bit of the individual with some

probability.

The second considered model problem was H-IFF with

supporting functions f0, f1 only. It was used to compare

EA + RL method with multi-objectivization [6] approach.

The proposed method performed equally well with the multi-

objective PESA algorithm and outperformed all other single

and multi-objective evolutionary algorithms, such as different

kinds of evolution strategies, DCGA and PAES [1]. The

maximal possible efficiency was achieved. It means that in

all EA + RL runs the best individual was evolved.

Finally, the experiment with the Royal Roads model prob-

lem described in the present paper showed that EA + RL

performs asymptotically equally well with EA in the case of

154154154

TABLE V
OVERVIEW OF THE EXPERIMENTS WITH EA + RL

Target
fitness
function

Auxiliary fitness functions Type of the aux-
iliary set

Best RL algorithm Implemented EAs and
MOEAs

Results

⌊
x
d

⌋
min(x, p);max(x, p) supporting and

obstructive,
dynamically
changing

Q-learning with ε-greedy
exploration; Delayed Q-
learning

GA with shift crossover and
homogeneous mutation

EA + RL > EA

H-IFF f0 = zero-bit blocks number;
f1 = one-bit blocks number

supporting only R-learning with ε-greedy
exploration

(1 + 1) ES; (1 + 5) ES;
(1 + 10) ES; GA with one-
point crossover; MOEAs
(PAES and PESA)

EA + RL > all EAs;
EA + RL > PAES;
EA + RL = PESA

Royal
Roads

number of zeros obstructive only Delayed Q-learning (1 + 1) ES EA + RL = EA

H-IFF f0; f1; number of matches
with 1010 . . . 10 mask

supporting and
obstructive

R-learning with ε-greedy
exploration

(1 + 5) ES; PESA-II MOEA EA + RL > EA;
EA + RL > PESA-II

the auxiliary set consisting of the obstructive fitness function

only. It is also confirmed that EA + RL outperforms the EA

in the case of auxiliary set of both supporting and obstructive

fitness functions on the example of the H-IFF optimization

problem variation. Results of solving this problem showed that

the proposed method outperforms multi-objective optimization

algorithm PESA-II in the case of presence of the obstructive

fitness function.

The summary of all the experiments taken with EA + RL

is presented in Table V. The “>” sign means “outperforms”,

the “=” sign means “performs asymptotically equally with”.

The efficiency measure is equal to the number of generations

taken to evolve the best individual, as described previously in

this paper. The table demonstrates that the proposed EA + RL

method outperforms the adjusted EA for all the auxiliary sets

with supporting fitness functions and it never performs worse

than the EA. It is also able to work properly with the auxiliary

set with dynamically varying properties. So the experiment

results confirm that the proposed method fulfills the formulated

requirements for all the model problems tested so far.

VII. CONCLUSION

A method of increasing the efficiency of single-objective

evolutionary algorithms is described. It is based on choosing

efficient auxiliary fitness functions with reinforcement learn-

ing. The auxiliary fitness functions are divided into supporting

and obstructive ones. Requirements based on this classification

are formulated. It is shown in the previous works that a part

of them is fulfilled for some model problems. Dealing with

obstructive functions is illustrated by the present experiment

results. The experiments are based on the modifications of

Royal Roads and H-IFF optimization model problems. Thus,

compliance with all the requirements has been illustrated on

a number of model problems. The proposed method is shown

to be effective.

VIII. ACKNOWLEDGMENTS

The research was supported by Ministry of Education and

Science of Russian Federation in the context of Federal

Program “Scientific and pedagogical personnel of innovative

Russia”.

REFERENCES

[1] J. D. Knowles, R. A. Watson, and D. Corne, “Reducing local optima
in single-objective problems by multi-objectivization,” in Proceedings
of the First International Conference on Evolutionary Multi-Criterion
Optimization, ser. EMO ’01. London, UK: Springer-Verlag, 2001, pp.
269–283.

[2] K. Deb, Multi-objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, 2001.

[3] M. T. Jensen, “Helper-objectives: Using multi-objective evolutionary
algorithms for single-objective optimisation: Evolutionary computation
combinatorial optimization,” Journal of Mathematical Modelling and
Algorithms, vol. 3, no. 4, pp. 323–347, 2004.

[4] M. Buzdalov, “Generation of Tests for Programming Challenge Tasks
Using Evolution Algorithms,” in Proceedings of the 2011 GECCO
Conference Companion on Genetic and Evolutionary Computation, New
York, US, ACM, 2011, pp. 763–766.

[5] A. Afanasyeva and M. Buzdalov, “Choosing best fitness function with
reinforcement learning,” in Proceedings of the Tenth International Con-
ference on Machine Learning and Applications, ICMLA 2011, vol. 2.
Honolulu, HI, USA: IEEE Computer Society, 2011, pp. 354–357.

[6] A. Afanasyeva and M. Buzdalov, “Optimization with auxiliary criteria
using evolutionary algorithms and reinforcement learning,” in Proceed-
ings of 18th International Conference on Soft Computing MENDEL
2012, Brno, Czech Republic, 2012, pp. 58–63.

[7] A. Gosavi, “Reinforcement learning: A tutorial survey and recent
advances,” INFORMS Journal on Computing, vol. 21, no. 2, pp. 178–
192, 2009.

[8] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith, “Pa-
rameter control in evolutionary algorithms,” in Parameter Setting in
Evolutionary Algorithms, 2007, pp. 19–46.

[9] A. E. Eiben, M. Horvath, W. Kowalczyk, and M. C. Schut, “Rein-
forcement learning for online control of evolutionary algorithms,” in
Proceedings of the 4th international conference on Engineering self-
organising systems ESOA’06. Springer-Verlag, Berlin, Heidelberg,
2006, pp. 151–160.

[10] S. Müller, N. N. Schraudolph, and P. D. Koumoutsakos, “Step size
adaptation in evolution strategies using reinforcement learning,” in
Proceedings of the Congress on Evolutionary Computation. IEEE,
2002, pp. 151–156.

[11] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman,
“PAC Model-free Reinforcement Learning,” in Proceedings of the 23rd
International Conference on Machine Learning (ICML 2006), 2006, pp.
881–888.

[12] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:
MIT Press, 1996.

[13] A. Schwartz, “A reinforcement learning method for maximizing undis-
counted rewards,” in Proceedings of the Tenth International Conference
on Machine Learning, 1993, pp. 298–305.

[14] D. W. Corne, N. R. Jerram, J. D. Knowles, M. J. Oates, and M. J., “Pesa-
II: Region-based selection in evolutionary multiobjective optimization,”
in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2001). Morgan Kaufmann Publishers, 2001, pp. 283–290.

155155155

