
Generation of Tests for Programming Challenge
Tasks on Graph Theory using Evolution Strategy

Maxim Buzdalov
St. Petersburg National Research University

of Information Technologies, Mechanics and Optics

49 Kronverkskiy prosp.

Saint-Petersburg, Russia, 197101

Email: mbuzdalov@gmail.com

Abstract—In this paper, an automated method for generation
of tests against inefficient solutions for programming challenge
tasks on graph theory is proposed. The method is based on the
use of (1 + 1) evolution strategy and is able to defeat several
kinds of inefficient solutions. The proposed method was applied
to a task from the Internet problem archive, the Timus Online
Judge.

I. INTRODUCTION

In most of the popular types of programming challenges

[1]–[3] the correctness of solutions for the programming tasks

is checked by running them on a number of pre-written tests

under time, memory and other limits, and then checking the

answer it gives. When successfully compiled and running on a

test, a solution may end up with one of the following outcomes

[4], [5]:

• Time Limit Exceeded (TL) — the solution exceeded the

time limit set for the problem;

• Memory Limit Exceeded (ML) — the solution exceeded

the memory limit set for the problem;

• Runtime Error (RE) — the solution terminated unex-

pectedly, most probably because of some runtime errors

(division by zero, array index out of bounds) or uncaught

exceptions;

• Presentation Error (PE) — the output file does not match

the required format;

• Wrong Answer (WA) — the output file contains an

incorrect answer;

• Accepted (AC) — the output file contains the correct

answer.

A correct solution is a solution which gets Accepted out-

come on every possible tests which fits the constraints given

in the problem statement. The aim of the test set is to defeat

solutions which are wrong or inefficient, that is, an ideal test

set must contain at least one test for every imaginable wrong

or inefficient solution.

The quality of test set for programming tasks mostly deter-

mines the quality of the challenge itself. In other words, weak

tests allow a number of incorrect solutions to pass the tests, so

skilled participants who are trained to invent correct solutions

are given less chance to win than unskilled ones who write

incorrect solutions in the hope it will be accepted.

Tests for programming challenge tasks, except for the most

trivial cases, are generated either by hand, for small-sized

tests, or by programs written by jury members that create

tests according to some predetermined patterns or at random.

Thus, generation of such tests requires deep knowledge of the

programming task and its possible solutions, and the quality

of the tests depends very much on the human factor.

One of the ways to make the situation better is to automate

the process of test creation as deep as possible. In this work,

evolution strategy is used to generate tests that challenge the

inefficient solutions. The use of evolution algorithm, such as

evolution strategy, is ideologically inspired by a number of

works on unit test generation [6], [7]. To the best knowledge

of the author, there are no works, except for his own [8],

that address automation of tests generation for programming

challenge tasks.

The rest of the paper is structured as follows. In Section II,

the method of test generation is described briefly. Section III

describes a statement of the problem for which tests were

generated. In Section V, examples of inefficient solutions and

corresponding fitness functions are shown. Section VI presents

the results of the experiment, and Section VII concludes.

II. THE METHOD

The main idea of the method of test generation using evolu-

tionary algorithms, such as evolution strategy, is to represent

searching of a suitable test as a search problem.

A test should be represented as an individual of an evolu-

tionary algorithm, and evolutionary operators, such as muta-

tion operator, should be defined on this representation.

A fitness function should be defined to represent the desired

quality of the test quantitatively. As this paper concentrates

on test generation against inefficient solutions, the fitness

function should generally be proportional to the amount of the

resource which the inefficient solution uses too much: time,

memory or something similar. However, using straightforward

measures, such as passed time or consumed memory, as fitness

function directly introduces problems with precision of the

measurements and random noise [8].

To overcome this difficulty, a fitness function should be

designed individually for each solution or for each class of

the solutions. Usually this involves modifying the source code

2012 11th International Conference on Machine Learning and Applications

978-0-7695-4913-2/12 $26.00 © 2012 IEEE

DOI 10.1109/ICMLA.2012.194

62

2012 11th International Conference on Machine Learning and Applications

978-0-7695-4913-2/12 $26.00 © 2012 IEEE

DOI 10.1109/ICMLA.2012.194

62

of the solution in order to calculate some value which will be

the fitness value. Concrete examples of fitness functions for

several types of solutions are introduced later in Section V.
As the test representation, evolutionary operators on this

representation and fitness function are all defined, an evo-

lutionary algorithm is run in order to optimize the fitness

function until the termination criterion is met. It is mostly

enough to stop the algorithm when, on the best tests evolved,

the solution under test starts consuming more resources than

allowed and, consequently, starts receiving negative outcomes.

III. TASK STATEMENT

The proposed method was tested on a programming task

named “Work for Robots”, which is located at Timus Online

Judge [9] under the number of 1695 [10].
The formalized statement looks as follows: given an undi-

rected graph, count the cliques in this graph. A clique is a full

subgraph of the given graph (including an empty subgraph).

The constraints follow:

• the number of vertices N does not exceed 50;

• the graph does not have loops or multiple edges between

the same pair of vertices;

• the time limit is 2 seconds;

• the memory limit is 64 megabytes.

This problem is an NP-hard problem. However, there ex-

ists a solution which runs in time and space of O(2N/2).
The solution uses the “meet-in-the-middle” approach, which,

briefly speaking, partitiones the graph into two parts, solves

some subproblems for these parts and then merges the results

together.
The graph which constitutes the test is represented as an

adjacency matrix. The (1 + 1) evolution strategy, which uses

the test representation and mutation operators described below,

is used as an optimization algorithm.

IV. TEST REPRESENTATION AND MUTATION OPERATIONS

The graph is represented by an adjacency matrix — a square

matrix of size of N ×N , where N is the number of vertices

of the graph. The elements of the matrix are boolean values.
The analysis of possible solutions shows that N should be

set to 50 for all the solutions.
Two mutation operators are used. The first operator works

as follows:

• the number of cells to be mutated K is selected from one

of these values: 10, 100, 1000;

• a randomly selected cell (X,Y) and its counterpart

(Y,X) are flipped. This operation is done K times.

The second operator flips a cell at once. The order of

cells to flip is determined at random before the start of the

optimization.
These two operators are performed in turn. It can be said

that the first operator performs an explorative type of search,

while the second one works exploitatively.

V. FITNESS FUNCTIONS

In this section, some approaches to design of the fitness

function is described.

A. Backtracking

The purely backtracking solutions are the easiest to chal-

lenge. For solutions of this type, the fitness is set to the

number of calls of the main (recursive) function. An example

of the recursive function, together with the fitness function

evaluation, is given below.

i n t f i t n e s s = 0 ;
long go (long mask) {

i f (mask == 0) {
r e t u r n 1 ;

}
i f ((mask & (mask − 1)) == 0) {

r e t u r n 2 ;
}
/ / I n c r e m e n t t h e f i t n e s s
++ f i t n e s s ;
i n t l a s t B i t = n u m b e r O f T r a i l i n g Z e r o s (mask) ;
l ong r e c 1 = mask ˆ (1L << l a s t B i t) ;
l ong r e c 2 = r e c 1 & edgesOf [l a s t B i t] ;
r e t u r n go (r e c 1) + go (r e c 2) ;

}

The key fact which makes the solutions of this type slow is

that they often call the function for the same argument many

times, while the function, except for the fitness increase, has

no side effects.

B. Backtracking with open hashing

One of the ways to speed up the backtracking solution is

to remember the calculated key-value pairs in a hash map. To

decrease the constant implementation factor, the open hashing

is used. The example of a solution that uses the open hashing

is given below (most of code borrowed from the previous

example is omitted).

i n t h a s h S i z e = 1000003;
long [] key = new long [h a s h S i z e] ;
l ong [] v a l = new long [h a s h S i z e] ;
i n t i n d e x F o r (l ong k) {

i n t i = (i n t) (k % h a s h S i z e) ;
w h i l e (key [i] != 0 && key [i] != k) {

i = (i + 1) % h a s h S i z e ;
}
r e t u r n i ;

}
l ong go (long mask) {

/∗ . . . ∗ /
i n t k = i n d e x F o r (mask + 1) ;
i f (key [k] != 0) r e t u r n v a l [k] ;
key [k] = mask + 1 ;
/∗ . . . ∗ /
r e t u r n v a l [k] = r e s u l t ;

}

A typical solution of this kind works fast enough, and the

only way to make it fail is to overfull its hash table. The

corresponding fitness function is computed the following way

after the program itself has done with calculations:

i n t f i t n e s s = 0 ;
f o r (i n t i = 0 ; i < h a s h S i z e ; ++ i) {

i f (key [i] != 0) {
++ f i t n e s s ;

}
}

6363

0 2000 4000 6000

2×108

4×108

6×108

8×108

Fitness function calls

F
it

ne
ss

m
ax

im
um

Fig. 1. Example of a FF plot for backtracking solutions

C. Excessive memory allocation

Another way to stop calculating the same values many

times, at least some of them, is using a cache for a part of the

arguments.

The example solution below caches the arguments if they

have only K = 24 lowest bits.

/ / The memory i s a l l o c a t e d s t a t i c a l l y
i n t cache [1 << 2 4] ;
l ong long go (long long mask) {

/∗ . . . ∗ /
i f (mask < cache . l e n g t h &&

cache [mask]) {
r e t u r n cache [mask] − 1 ;

}
/∗ . . . ∗ /
i f (mask < cache . l e n g t h) {

cache [mask] = r e s u l t + 1 ;
}
r e t u r n r e s u l t ;

}
If the parameter K is lower, then the solution times out.

But if K ≥ 24, then the cache array reaches or exceeds 64
megabytes in size. One may expect that this solution gets

“Memory Limit Exceeded” outcome. It is not true generally,

since the memory for the cache array is allocated by pages of,

typically, 4 kilobytes by the operating system. The pages that

were not used are not counted in total memory consumption.

To make a solution of this kind fail, one needs to make it

“touch” all the pages it allocates. So, the fitness function is

the number of memory pages used.

VI. THE RESULTS OF THE EXPERIMENT

At the moment of start of the experiment, there were 86

accepted solutions. Of these, ten solutions were selected to

generate tests against them. One of them was later detected to

be correct, and the remaining nine were defeated by nine newly

generated tests. Examples of fitness function plots for some

of the solutions belonging to three different types described

above are shown on Fig. 1–3. For Fig. 1, the fitness function

was equal to the number of calls to the recursive function

equivalent to the function described in Section V-A. For Fig. 2,

the fitness function was equal to the size of the hash table. For

Fig. 3, the fitness function was equal to the number of used

memory pages.

After adding these tests to the server (they received the

numbers from 43 to 52 without 47), 45 previously accepted

0 2×104 4×104 6×104

0

106

2×106

3×106

4×106

5×106

Fitness function calls

F
it

ne
ss

m
ax

im
um

Fig. 2. Example of a FF plot for hashing solutions

0 5×104 105 1.5×105

104

2×104

3×104

4×104

5×104

6×104

Fitness function calls

F
it

ne
ss

m
ax

im
um

Fig. 3. Example of a FF plot for solutions with excessive memory allocation

solutions failed to pass the new tests. In Table I there is a

short summary on the number of solutions defeated by each

of the generated tests with the indication of the outcome (WA,

TL and ML, the meaning of the outcomes were explained in

Section I).

TABLE I
EFFICIENCY OF NEWLY GENERATED TESTS

No. of test Number of solutions not passing the test
All WA TL ML

43 1 0 1 0
44 2 0 2 0
45 2 0 2 0
46 1 0 1 0
48 9 0 8 1
49 13 0 13 0
50 12 0 12 0
51 2 2 0 0
52 3 0 0 3

Total 45 2 39 4

VII. CONCLUSION

The method of test generation for programming challenge

tasks on graph theory against inefficient solutions was de-

scribed. This method is based on the use of (1 + 1) evolution

strategy.

The method was demonstrated on the example of the

problem “Work for Robots”, a programming task from the

Timus Online Judge. The experiments showed the efficiency

of the presented approach, as after adding newly generated

tests more than a half of previously accepted solutions were

rejected.

6464

REFERENCES

[1] ACM International Collegiate Programming Contest. [Online].
Available: http://cm.baylor.edu/welcome.icpc

[2] International Olympiad in Informatics. [Online]. Available:
http://www.ioinformatics.org

[3] Programming Contests at TopCoder. [Online]. Available:
http://www.topcoder.com/tc

[4] NEERC Contest Rules. [Online]. Available:
http://neerc.ifmo.ru/information/contest-rules.html

[5] S. S. Skiena and M. A. Revilla, Programming Challenges: The Program-
ming Contest Training Manual. New York: Springer Verlag, 2003.

[6] J. T. Alander, T. Mantere, and P. Turunen, “Genetic algorithm based

software testing,” in Artificial Neural Nets and Genetic Algorithms.
Wien, Austria: Springer-Verlag, 1998, pp. 325–328.

[7] P. Tonella, “Evolutionary testing of classes,” in ISSTA, 2004, pp. 119–
128.

[8] M. Buzdalov, “Generation of tests for programming challenge tasks
using evolution algorithms,” in Proceedings of the 2011 GECCO Confer-
ence Companion on Genetic and Evolutionary Computation, New York,
US, ACM, 2011, pp. 763–766.

[9] Timus Online Judge. The Problem Archive with Online Judge System.
[Online]. Available: http://acm.timus.ru

[10] Problem “Work for Robots”. [Online]. Available:
http://acm.timus.ru/problem.aspx?num=1695

6565

