
Extended Finite-State Machine Induction using
SAT-Solver

Vladimir Ulyantsev
St. Petersburg National Research University of

Information Technologies, Mechanics and Optics

Computer Technologies Department

197101, St. Petersburg, Russia

Kronverkskiy pr., 49

Email: ulyantsev@rain.ifmo.ru

Fedor Tsarev
St. Petersburg National Research University of

Infromation Technologies, Mechanics and Optics

Computer Technologies Department

197101, St. Petersburg, Russia

Kronverkskiy pr., 49

Email: tsarev@rain.ifmo.ru

Abstract—In the paper we describe the extended finite-state
machine (EFSM) induction method that uses SAT-solver. Input
data for the induction algorithm is a set of test scenarios. The
algorithm consists of several steps: scenarios tree construction,
compatibility graph construction, Boolean formula construction,
SAT-solver invocation and finite-state machine construction from
satisfying assignment. These extended finite-state machines can
be used in automata-based programming, where programs are
designed as automated controlled objects. Each automated con-
trolled object contains a finite-state machine and a controlled
object. The method described has been tested on randomly
generated scenario sets of size from 250 to 2000 and on the
alarm clock controlling EFSM induction problem where it has
greatly outperformed genetic algorithm.

I. INTRODUCTION

Extended finite-state machines (EFSM) are widely used in

linguistics, computer science, philosophy, biology, mathemat-

ics, logic and reactive systems modeling. One of the EFSM

application areas is automata-based programming [1], [2], [3]

where EFSMs are used as a software systems core component.

EFSM induction methods usage greatly increases automa-

tion level in automata-based program development. In previous

works genetic algorithms and genetic programming are used

for EFSM induction [4]. These algorithms have a major draw-

back because of ability to process only relatively small test

sets and produce only relatively small finite-state machines.

In this paper we present the EFSM induction algorithm

based on translation to Boolean formula satisfiability problem

(SAT) which can handle larger test sets and EFSMs.

The paper is structured as follows. Section 2 gives a

short description of automata-based programming. Section 3

gives an overview of existing finite-state machines induction

methods. Section 4 gives definitions of test scenarios and

describes input data for the algorithm. Section 5 describes

the algorithm. Section 6 gives experimental results. The paper

finishes with the conclusion and description of future work.

II. AUTOMATA-BASED PROGRAMMING

Automata-based programming is a programming paradigm

which proposes to design and implement software systems

as systems of interacting automated controlled objects. Each

automated controlled object consists of controlling finite-state

machine and controlled object itself.

A finite-state machine has a set of states, a transition

function and an action function. A controlled object has

commands and requests (implemented by its methods) and a

set of computational states.

A finite-state machine takes events and input variables as

input. They can come from other parts of the system as well

as from the controlled object. After receiving an event and

an input variable the finite-state machine makes transition on

which some output action is sent to controlled object. Output

actions can change the computational state of the controlled

object.

The main idea of automata-based programming is to distin-

guish control states and computational states. The number of

control states is not large so they can be drawn on transition

graph. Each of them differs qualitatively from the others and

defines actions. The number of possible computational states

can be very large (and even infinite). They differ from each

other quantitatively and define only results of actions but not

actions themselves.

In this paper, we focus on automata-based programs with

only one automated controlled object. We suppose that the

controlled object, events and output actions are predefined and

our task is to design the finite-state machine.

III. FINITE-STATE MACHINES INDUCTION

Finite-state machines induction with genetic algorithms has

been studied by several researchers. In [5] Spears and Gor-

don use genetic algorithm to learn finite-state machines for

“Competition for Resources” game. In this game two agents

compete for resources (represented by cells of a field) on a

toroidal field. One of the agents has a stochastic strategy and

the other one is controlled by a finite-state machine. Finite-

state machines in the genetic algorithm were represented using

transition tables of size 80n (n is the number of states).

Uniform mutation and crossover are used.

Spears and Gordon test the algorithm with n = 1..10.

Experiments show that finite-state machines with two or more

states perform better in this problem. Best finite-state machines

2011 10th International Conference on Machine Learning and Applications

978-0-7695-4607-0/11 $26.00 © 2011 IEEE

DOI 10.1109/ICMLA.2011.166

346

� ��������	
���

�������	

�� ����������	

�
���

����������	

�

��

Fig. 1. Example of the extended finite-state machine

with 3 to 10 states perform equally well – they win about 90%

of games.

Finite-state machines for regular languages recognition have

also been studied. In [6] Heule and Verwer apply “translation

to SAT” method for deterministic finite automaton (DFA)

induction. Their experiments show that method outperforms

EDSM on Abbadingo One [7] competition test set.

IV. DEFINITIONS AND PROBLEM STATEMENT

In EFMSs considered in this paper each transition is la-

beled with an event, an output actions sequence and a guard

condition which is a Boolean formula depending on input

variables. States of the finite-state machine are not divided

into accepting and non-accepting. An example of an EFSM is

shown on the Fig. 1. In this paper on this figure and all similar

ones transition labels have the following format: “event [guard

condition] (output actions sequence)”. The guard condition

“true” means that the transition is performed unconditionally.

For the EFSM shown on the Fig. 1 the set of events is A,

B, guard conditions depend only on one input variable x, set

of output actions is z1, z2. In this EFSM and in all EFSMs

considered in this paper the state with number 0 is starting.

Input data for EFSM induction is a set of test scenarios.

A test scenario is a sequence of triples T1 . . . Tn, Ti =
〈ei, fi, Ai〉, where ei is an event, fi is a Boolean formula

of input variables, defining the guard condition, Ai is the

sequence of output actions. Each of these triples Ti is called

a scenario element.

We will say that a finite-state machine complies with the

scenario element Ti in state s if there is a transition from

state s labeled with event ei, output actions sequence Ai and

guard condition equal to fi as Boolean formula. An extended

finite-state machine complies with the scenario T1 . . . Tn, if it

complies with each of the scenario elements in states of a path

formed by transitions used while processing this scenario.

In this paper the following problem is considered: you are

given an integer number C and a set of scenarios Sc. You are

to construct the finite-state machine with C states complying

with all the scenarios from Sc.

V. ALGORITHM DESCRIPTION

EFSM induction algorithm is based on ideas from [6]. First

of all, all given scenarios are used to construct a scenarios tree.

To construct the finite-state machine vertices of this tree are to

be painted by the given number of colors (equal to the number

of states). Vertices of one color will be merged into one state

of the finite-state machine. Outgoing transitions for all states

will be formed as a union of outgoing edges for vertices of

the corresponding color. So, EFSM induction algorithm has

five stages:

1) Scenarios tree construction.

2) Consistency graph construction.

3) Boolean CNF-formula construction.

4) SAT-solver invocation.

5) EFSM construction from the satisfying assignment.

A. Scenarios tree construction

A scenarios tree is a tree each edge of which is labeled with

an event, a guard condition and a sequence of output actions.

The scenarios tree construction algorithm is described below.

At the start of the algorithm the scenarios tree contains only

one vertex — the root. Each scenario is processed separately

in this algorithm.

Each of the scenarios is inserted element by element starting

from the first one into the tree. During this process two

variables will be stored: the number of the current vertex of

tree v and the number i of first not yet processed element of

the scenario.

At the start of the scenario insertion v is the root and i = 1.

On each step we check the existence of the outgoing edge E
from vertex v, labeled with event ei and a guard condition

equal to fi as Boolean function. If such an edge does not

exist then a new vertex u and a new edge from v to u are

created. This new edge is labeled by the triple 〈ei, fi, Ai〉.
After that u becomes the current vertex and i is increased by

one.

If such an edge exists then the sequence of output actions

Ai is compared with the sequence A′, by which edge E is

labeled. If Ai = A′, then the vertex to which edge E goes

becomes current and i is increased by one.

If these sequences are not equal then the scenarios set

Sc is contradictory. In this case the algorithm stops and the

corresponding message is shown to user.

Guard conditions check is performed after the insertion of

all scenarios into the tree. All pairs of outgoing edges are

checked for each vertex of the tree. If there exists a pair

of edges labeled with the same event such that their guard

conditions are not equal as Boolean functions but have a

common satisfying assignment, then the scenarios set defines

the non-deterministic behavior. In this case the algorithm stops

and the corresponding message is shown to user.

Fig. 2 shows a scenarios tree constructed from three scenar-

ios. The EFSM shown on Fig. 1 complies with these scenarios.

B. Consistency Graph Construction

Consistency graph vertices set is the same as scenarios

tree vertices set; therefore we will not distinguish between

graph and tree vertices. Graph edges are constructed in

the following way. Two vertices u and v are connected

347

�

��������	
���

�

��������	
���

	�
����
���	
��
���

��������	
��� �������
���	
��
���

��������	
���

���������	
��� ���������	
���

Fig. 2. Scenarios tree

by an edge (such vertices are called inconsistent), if there

exists a sequence of events and variables values sets pairs

〈e1, values1〉 . . . 〈ek, valuesk〉, which tells them apart. We will

say, that this sequence tells vertices u and v apart if each of

the following conditions holds:

• in the tree there is a path Pu from vertex u, the edges

of which are labeled with events e1 . . . ek and such

guard conditions f1 . . . fk, that values1 is a satisfying

assignment for f1, values2 is a satisfying assignment for

f2, . . . , valuesk is a satisfying assignment for fk;

• a similar path Pv starts from vertex v;

• for the last edges of paths Pu and Pv at least one of the

following conditions holds:

– labels of these edges differ in output actions;

– guard conditions of these edges have a common

satisfying assignment, but are not equal as Boolean

functions.

The main idea of the consistency graph construction algo-

rithm is dynamic programming. For each scenarios tree vertex

v we compute the set S(v) of vertices inconsistent with it.

These sets are computed starting from tree leaves. For each

leaf u the set S(u) is empty by definition (because there are

no paths starting from a leaf).

Suppose that this set is already computed for all children of

some vertex v. Set S(v) can be computed in the following way.

We check all vertices of the tree — vertex u should be included

into the set S(v) if there exists a pair of edges ux (labeled with

event e, formula f1 and output actions sequence A1) and vy
(labeled with the same event e, formula f2 and output action

sequence A2) such that one of the following conditions holds:

• formulae f1 and f2 have a common satisfying assign-

ment, but are not equal as Boolean functions. It means

that 〈e, values〉 is a sequence which tells apart u and

v (here by values the satisfying assignment of f1 is

denoted);

• formulae f1 and f2 are equal as Boolean functions,

but sequences A1 and A2 are not equal. It means that

〈e, values〉 is a sequence which tells apart u and v;

• formulae f1 and f2 are equal as Boolean functions

and vertex x is included into S(y), which is al-

ready computed. It means that there exists a sequence

〈e1, values1〉 . . . 〈ek, valuesk〉, telling apart x and y,

and vertices v and u are told apart by the sequence

〈e, values〉〈e1, values1〉 . . . 〈ek, valuesk〉.

�

�

�

�

�

�
�

�

	

Fig. 3. Consistency graph

The running time of this stage of the EFSM induction

algorithm is O(n2) (by n the number of vertices in scenarios

tree is denoted), because each pair of scenarios tree edges will

be considered no more than once.

To achieve this running time we make a certain precompu-

tation. For each pair of guard conditions f and g occurring in

the scenarios we:

• find if f is equal to g as a Boolean function;

• find if f and g have a common satisfying assignment.

In the worst case the running time of the precomputation step

is O(22m−1 · n2), where m is the maximal number of input

variables used in one formula. In practice m do not exceed 5.

Fig. 3 shows the consistency graph for the scenarios tree

from Fig. 2.

C. Boolean CNF-formula Construction

The CNF-formula construction algorithm is based on ideas

from [6]. The CNF-formula contains six types of clauses

depending from the following variables:

• xv,i (for each vertex v of the scenarios tree and color i
which is a number from 1 to C) — if it is true that vertex

v has color i;
• ya,b,e,f (for each pair of resulting EFSM states (a, b),

each event e and each formula f occurring in scenar-

ios) — is it true that in resulting EFSM a transition from

state a to state b labeled with event e and formula f
exists.

D. Usage of SAT-solver to Find Satisfying Assignment for the
CNF-Boolean Formula

To find the satisfying assignment for the constructed CNF-

formula we use cryptominisat SAT-solver [8], the winner

of SAT RACE 2010 (http://baldur.iti.uka.de/sat-race-2010).

DIAMAX format (http://www.satlib.org/ubcsat/satformat.pdf)

is used to represent the formula.

If SAT-solver does not find the satisfying assignment then

the EFSM with C states complying with the given set of

scenarios Sc does not exist. In the other case, we determine

scenarios tree vertices colors from xv,i values. Fig. 4 shows

the scenarios tree coloring from Fig. 2.

After that all vertices of the same color are merged into

one state of the finite-state machine. Starting state is the state

corresponding to the color of tree root. For example, after

merging vertices of the tree shown on Fig. 4 we obtain the

348

�

��������	

��

��������	
���

����������	

�
���

��������	

�� �����������	

�

��

��������	

��

���������	
��� ���������	
���

Fig. 4. Scenarios tree coloring

� ��������	
���

�������	

�� ����������	

�
���

����������	

�

��

Fig. 5. Extended finite-state machine obtained by merging vertices of tree

finite-state machine shown on Fig. 5. Note, that this finite-

state machine is isomorphic to the machine shown on Fig. 1.

VI. EXPERIMENTS

First experiment has been performed on the EFSM for

alarm clock controlling induction problem [4]. This clock has

three buttons (marked with letters “H”, “M”, “A”), a timer

and three modes of operation: “alarm is off”, “alarm is on”,

“setting alarm time”. Button A is used for switching between

these modes, buttons H and M — to adjust the time. The

alarm clock has four events, two input variables and seven

output actions.

The test set for this problem contains 38 scenarios (total size

of scenarios is 242 scenario elements) describing the finite-

state machine behavior in different modes of operation. On

this problem the algorithm described in this paper inducts

the correct EFSM in less than one second, while the genetic

algorithm from [4] needs about five minutes on the same

computer with Intel Core 2 Quad Q9400 processor and 4 GB

of RAM.

Second experiment measures the algorithm performance on

larger sets of scenarios. This experiment contains three stages:

• generation of a random EFSM with n states;

• test scenarios generation — each scenario is a random

path in the EFSM;

• induction of a EFSM with n states from the generated set

of scenarios with the described algorithm. Running time

of the whole induction process (including solving SAT

with cryptominisat) is recorded.

Ten EFSMs with 5, 10, 15 and 20 states have been gen-

erated. From each EFSM eight scenario sets with size of 20,

40, 60, 80, 100, 120, 140, 160 scenarios and total size of 250,

500, 750, 1000, 1250, 1500, 1750, 2000 scenario elements

were generated. Size of each scenario does not exceed 25.

Fig. 6. Execution time for EFSMs with 5, 10, 15 and 20 states

This experiment has been also conducted using a computer

with Intel Core 2 Quad Q9400 processor. On generated

scenario sets the algorithm used up to 3.5 GB of RAM, and

CNF-formula contained up to 25000 variables and 5000000

clauses. Fig. 6 shows dependency of execution time from the

total scenarios size for EFSM with 5, 10, 15 and 20 states.

VII. CONCLUSION

The EFSM induction algorithm based on translation to

SAT is described in the paper. When compared with genetic

algorithm this algorithm performs faster up to an order of

magnitude.

Future work includes constraint satisfiability problem (CSP)

solver application instead of SAT-solver and usage of verifi-

cation methods in the EFSM induction process.

This research is supported by the Ministry of Education and

Science of Russian Federation under contract 16.740.11.0455.

REFERENCES

[1] N. Polikarpova and A. Shalyto, Automata-based programming (in Rus-
sian). Piter, 2009.

[2] A. Shalyto, “Logic control and reactive systems: Algorithmization and
programming,” Automation and Remote Control, vol. 62, no. 1, pp. 1–29,
2001.

[3] V. Gurov, M. Mazin, A. Narvsky, and A. Shalyto, “Tools for support
of automata-based programming,” Programming and Computer Software,
vol. 33, no. 6, pp. 343–355, 2007.

[4] F. Tsarev, “Method of finite state machine induction from tests with
genetic programming,” Information and Control Systems (Informatsionno-
upravljajuschie sistemy, in Russian), no. 5, pp. 31–36, 2010.

[5] W. M. Spears and D. F. Gordon, “Evolving finite-state machine strategies
for protecting resources,” in Proceedings of the International Symposium
on Methodologies for Intelligent Systems 2000. ACM Special Interest
Group on Artificial Intelligence. Springer-Verlag, 2000, pp. 166–175.

[6] M. Heule and S. Verwer, “Exact dfa identification using sat solvers,”
in Grammatical Inference: Theoretical Results and Applications
10th International Colloquium, ICGI 2010, ser. Lecture Notes
in Computer Science, J. M. Sempere and P. Garca, Eds.,
vol. 6339. Springer, 2010, pp. 66–79. [Online]. Available:
http://www.st.ewi.tudelft.nl/∼marijn/publications/DFA ICGI.pdf

[7] K. J. Lang, B. A. Pearlmutter, and R. A. Price, “Results of the abbadingo
one dfa learning competition and a new evidence-driven state merging
algorithm,” in ICGI, ser. Lecture Notes in Computer Science, vol. 1433.
Springer, 1998, pp. 1–12.

[8] M. Soos, “Cryptominisat 2.5.0,” in SAT Race competitive event booklet,
July 2010.

349

