
Choosing Best Fitness Function
with Reinforcement Learning

Arina Afanasyeva
National Research University

of Information Technologies, Mechanics and Optics
49 Kronverkskiy prosp.

Saint-Petersburg, Russia, 197101
Email: afanasyevarina@gmail.com

Maxim Buzdalov
National Research University

of Information Technologies, Mechanics and Optics
49 Kronverkskiy prosp.

Saint-Petersburg, Russia, 197101
Email: mbuzdalov@gmail.com

Abstract—This paper describes an optimization problem with
one target function to be optimized and several supporting
functions that can be used to speed up the optimization process. A
method based on reinforcement learning is proposed for choosing
a good supporting function during optimization using genetic
algorithm. Results of applying this method to a model problem
are shown.

I. INTRODUCTION

There exist several kinds of optimization problems, such
as the scalar optimization problem and the multicriteria opti-
mization problem [1]. In this research, a different optimization
problem is considered. The problem is to maximize a certain,
target function. For each calculation of the target function,
several supporting functions are calculated as well. Some of
the supporting functions may correlate with the target one,
and, in fact, it may be more efficient to optimize some of the
supporting functions in certain phases of optimization, even if
during this process the target function sometimes decreases.
Such problems often arise in automated performance test
generation [2].

Genetic algorithms (GA) are often used for solving difficult
optimization problems [3]. One of the drawbacks of using GAs
is that the process of optimization may take a long time, so,
if an optimization problem with supporting functions is con-
sidered, testing each of the supporting functions is very ineffi-
cient. This paper proposes the method which allows choosing
the most efficient fitness function automatically during the run
of the genetic algorithm. Moreover, when different functions
are efficient at different stages of optimization process, the
method chooses the currently optimal function dynamically.

Let us introduce some concepts. Consider a set of fitness
functions (FFs). The goal of the genetic algorithm is to breed
an individual with the best value of one of these functions,
which we call the target FF. The rest of the functions will
be called supporting FFs. The FF that is used in the genetic
algorithm at the moment will be called the current FF.

A model problem, where use of different supporting func-
tions at different stages of optimization is more efficient, is
used to demonstrate that reinforcement learning [4] allows to
choose the optimal current FF during the run of the GA.

II. MODEL PROBLEM

Let an individual be a bit string of a fixed length n with x
bits set to 1. The target fitness function is

g(x) = bx
k
c. (1)

Supporting fitness functions are h1(x) = min(x, p) and
h2(x) = max(x, p), where p is a positive integer. We will
call p the switch point.

It is most efficient to use the function h1 as the current
fitness of the individuals with the number of bits less than p.
For the other individuals, the function h2 should be used.

The task for the proposed method is to dynamically switch
GA to the most appropriate current FF basing on the kind of
the individuals in the current generation. In other words, the
method should set the current FF to h1 first and switch it to
h2 when the individuals in the current generation reach the
switch point.

III. BASICS OF REINFORCEMENT LEARNING

Many of the reinforcement learning (RL) algorithms do
not require preparation of a training set [5]. Such algorithms
are convenient to use with GA, as there is no need to make
several GA runs in order to collect some training information.
Furthermore, the incremental nature of some reinforcement
learning algorithms seems to be promising for dynamic switch
of the current fitness function during the GA run time. So we
chose reinforcement learning to optimize GA.

Recall some basic concepts of RL. The agent applies some
actions to the environment. After each action the agent receives
some representation of the environment’s state and some
numeric reward. The agent should maximize the total amount
of reward it receives.

It is essential for the algorithms we used that the RL task
can be represented as a Markov decision process (MDP). The
MDP consists of
• set of states S;
• set of actions A;
• reward function R : S ×A→ R;
• transition function T : S × A × S → R, such as the

probability of transition from the s state to the s′ caused
by taking the action a is T (s, a, s′).

2011 10th International Conference on Machine Learning and Applications

978-0-7695-4607-0/11 $26.00 © 2011 IEEE

DOI 10.1109/ICMLA.2011.163

354

It is shown in the next section how the model problem was
represented in terms of MDP.

IV. REINFORCEMENT LEARNING TASK

Consider the representation of the model problem as a
reinforcement learning task. Set of actions of the agent is
represented by fitness functions: A = g, h1, h2. Applying
some action means choosing the corresponding fitness function
as the current one. It is followed by creation of a new
generation of individuals in the GA.

The state of the environment depends on the state of the
GA. It is a vector of the fitness functions ordered by the
value of (f(xc)−f(xp))/f(xc), where f is a fitness function
to be measured, xp is the number of bits set to one in the
best individual from the previous generation, and xc is the
number of bits set to one in the best individual from the current
generation.

The value of the reward function depends on changes of the
fitness of the best individual, which appear after the creation of
the next generation caused by the action of the agent. Before
giving the formula for the reward function, we will define an
auxiliary function Df as the following:

Df (x1, x2) =


0 if f(x2)− f(x1) < 0

0.5 if f(x2)− f(x1) = 0

1 if f(x2)− f(x1) > 0

The reward function is

R(s, a) = Dg(xs, xs′)+c(Dh1
(xs, xs′)+Dh2

(xs, xs′)), (2)

where c ∈ [0, 1] is a real-valued parameter that allows to
variate the supporting contribution of fitness functions to the
reward, s, s′ are the previous and the new state respectively,
a is the action that caused transition from s to s′, xs and xs′
are the number of bits set to one in the best individuals that
correspond to the states s and s′ respectively.

V. METHOD DESCRIPTION

We used ε-greedy Q-learning [5] and Delayed Q-
learning [6] algorithms. They can be classified as incremental
model-free reinforcement learning algorithms [7]. Model-free
algorithms were chosen because they have relatively low space
and computational complexities. Such characteristics allow not
to slow down the GA which solves the model problem.

An incremental algorithm that controls the GA was imple-
mented. Each step of this algorithm consists of the learning
step and the GA step. At the learning step, the agent chooses
the current fitness function. At the GA step, this function is
used to create the next generation of the individuals.

VI. EXPERIMENT

The model problem was solved using GA that was con-
trolled by ε-greedy Q-learning and Delayed Q-learning. A
normal GA without any learning was considered as well. The
following subsections describe this experiment and its results.

A. Description of the experiment

During the experiment all the implemented algorithms were
run with different combinations of the model problem param-
eters values and the learning algorithm parameters values.

The following parameters of the model problem were used:
• l — the length of an individual;
• p — the switch point;
• k — the divisor in the target function g (see 1).
The parameters of learning are different for different algo-

rithms. The algorithm based on Delayed Q-learning had the
following parameters [6]:
• m — the update period of Q-value estimates;
• ε — the bonus reward;
• γ — the discount factor.
The following parameters of the ε-greedy Q-learning algo-

rithm were adjusted:
• ε — the exploration probability;
• α — the learning speed;
• γ — the discount factor.
The preliminary experiment showed that the parameter c

from the reward function definition (see 2) should be of
approximately 0.5. It allowed to give preference to the target
function and to take into account the values of the supporting
functions at the same time. Values of supporting functions
change more frequently that allows to gather more experience
and increases learning performance.

During the main experiment more than thousand combina-
tions of parameter values were processed. Each configuration
was run 50 times in order to average the results. We tried
to search for the best parameters with gradient descent, but
it turned to be inefficient due to stochastic nature of genetic
algorithms. The parameters considered below were manually
chosen from the set of calculated configurations.

The crossover probability in all algorithms was equal to
0.7. Two mutation probabilities were used: 0.01 (the high
one) and 0.003 (the low one). This lead to different kinds
of the environment. Use of the high mutation probability
resulted in slowing down the GA. More specifically, the GA
evolved individuals with new fitnesses relatively rare, which
resulted in the reward function value changing too slow. It
is hard to gather experience using such GA, but Delayed Q-
learning showed good results. Greedy Q-learning turned to be
more applicable for use with low mutation probability. These
facts are illustrated in the next subsections using the problem
parameters l = 400, p = 266, k = 10.

B. Performance results for high mutation probability

Consider the results for the big mutation probability 0.01.
The plots of the GA runs controlled by Delayed Q-learning
and normal uncontrolled GA runs can be seen on Fig. 1. The
horizontal axis corresponds to the number of a generation. The
vertical axis reflects average values of the target FF of the best
individual from the corresponding generation.

The learning parameters here are m = 100, ε1 = 0.2, γ =
0.01. This set of values is one of the sets that provided high

355

Fig. 1. GA run with Delayed Q-learning (left) and no learning (right)

Fig. 2. GA run with Delayed (left) and ε-greedy Q-learning (right)

performance during the experiment. The GA with learning gets
better individuals faster, as the learning algorithm chooses the
proper current FF while the normal GA uses the target FF as
the current one. The horizontal part of the Delayed Q-learning
plot corresponds to the period of gathering experience. At this
period each fitness function is chosen with equal probability.

Fig. 2 compares GA runs controlled by Delayed Q-learning
and ε-greedy Q-learning. The parameters of the Delayed Q-
learning algorithm are the same as on the Fig. 1. The param-
eters of the ε-greedy Q-learning algorithm are ε = 0.1, α =
0.1, γ = 0.01. These values provided the best performance
of the ε-greedy Q-learning based algorithm. The exploration
strategy used in this algorithm allows to reflect changes of
the state faster. The ε-greedy Q-learning algorithm does not
need to gather experience for some fixed period of time unlike
the Delayed Q-learning algorithm does. At the same time, the
average fitness provided by the ε-greedy controlled GA is less
than the average fitness achieved using Delayed Q-learning. In
other words, the Delayed Q-learning based algorithm shows
better results during the long run.

C. Choice of FF for high mutation probability

Fig. 3 shows number of different current fitness functions
chosen by the learning algorithms. Let us call the first interval
the numerical interval that ends with the switch point. The
numerical interval that starts with the switch point is the
second interval, respectively. FF1 denotes to the supporting
function h1 that is efficient on the first interval, FF2 denotes to
h2 that is efficient on the second interval, FF3 corresponds to
the target function g. The ε-greedy algorithm is more flexible
on the first interval. It manages to choose h1 as the current FF.
Delayed Q-learning algorithm needs time to gather experience,
so it has no time to choose the most advantageous current FF
on the first interval. Although it switches to h2 at the second

Fig. 3. Number of current FF choices made by Delayed (top) and ε-greedy
Q-learning (bottom)

Fig. 4. GA run with ε-greedy Q-learning (left) and no learning (right)

interval rather quickly. So both Delayed and ε-greedy Q-
learning based algorithms eventually choose h2 at the second
interval.

D. The case of low mutation probability

Use of the low mutation probability 0.003 leads to different
results. As it was mentioned, ε-greedy Q-learning showed
better results here. What is more, a universal combination of
its parameters was found. It is ε = 0.3, α = 0.6, γ = 0.01.
This combination leads to good performance with most of the
considered combinations of the model problem parameters.

In the Fig. 4 the best instance of the ε-greedy Q-learning
based algorithm is compared with the genetic algorithm that
uses g (see 1) as fitness function. The Fig. 4 shows that it
performs better than the GA used in the model problem.

Best instances of Delayed Q-learning and ε-greedy Q-
learning based algorithms are compared in the Fig. 5. The
Delayed Q-learning based algorithm is still better than the
normal GA, but its performance becomes worse than the
performance of the second algorithm. Notice that, in the case
of low mutation probability, there is no constant part in the
Delayed algorithm plot. It is because GA manages to evolve
better individuals even with an inefficient current function
chosen.

Low mutation probability results in speeding up the GA.
So results provided by the target FF during some fixed
period of time slightly differ from the results provided by
the proper supporting FF. Consequently, it is hard for the
Delayed algorithm to choose between the supporting function
and the target one. At the same time greedy algorithm chooses
the proper supporting functions at the both intervals without
delay. The Fig. 6 reflects the choices performed by the two
considered algorithms.

VII. CONCLUSION

An approach that allows choosing the current fitness func-
tion dynamically in a genetic algorithm in order to speed up

356

Fig. 5. GA run with ε-greedy (left) and Delayed Q-learning (right)

Fig. 6. Number of current FF choices made by ε-greedy (top) and Delayed
Q-learning (bottom)

the search of the best individual is described. This approach
is based on the reinforcement learning. It showed good results
in solving the model problem. Two different Q-learning algo-
rithms were used. The ε-greedy Q-learning provided switching
to the proper fitness function on the spot. Delayed Q-learning
provided higher average fitness during the long run in the
case of high mutation probability. In the case of low mutation
probability, ε-greedy Q-learning turned to be more efficient.
The proposed method can be extended in order to be used
with other optimization algorithms, not only genetic ones.
Application of reinforcement learning seems to be promising
in the area of choosing supporting optimization criteria.

The possible directions of future work are the following:
• Investigation of the model-based reinforcement learning

applicability. Model-based learning can allow taking into
account features of genetic algorithms, but it is also likely
to require more resources.

• Implementation of the special algorithms for non-
stationary environment [8]. It is promising since a genetic
algorithm is likely to be better described as a non-
stationary environment.

• Application of the proposed approach to the solution of
some practical problems, particularly, to the generation
of tests described in [2].

• Application of the method to other optimization algo-
rithms.

REFERENCES

[1] M. Ehrgott, Multicriteria optimization. Springer, 2005.
[2] M. Buzdalov, “Generation of tests for programming challenge tasks using

evolution algorithms,” in Proceedings of the 2011 GECCO conference
companion on Genetic and evolutionary computation, New York, US,
ACM, 2011, pp. 763–766.

[3] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:
MIT Press, 1996.

[4] T. M. Mitchell, Machine Learning. McGraw Hill, 1997.
[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: MIT Press, 1998.
[6] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman, “Pac

model-free reinforcement learning,” in ICML-06: Proceedings of the 23rd
international conference on Machine learning, 2006, pp. 881–888.

[7] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
p. 237285, 1996.

[8] B. C. D. Silva, E. W. Basso, A. L. C. Bazzan, and P. M. Engel, “Dealing
with non-stationary environments using context detection,” in Proceedings
of the 23rd International Conference on Machine Learning (ICML 2006).
ACM Press, 2006, pp. 217–224.

357

