
Genetic Algorithm for Induction of Finite Automata  
with Continuous and Discrete Output Actions 

Anton Alexandrov 
St. Petersburg State University of IT, 

Mechanics and Optics 
Russia, St. Petersburg,  

Kronverksky pr., 49 
+7 (812) 232-43-18 

alexandrov@rain.ifmo.ru

Alexey Sergushichev 
St. Petersburg State University of IT, 

Mechanics and Optics 
Russia, St. Petersburg,  

Kronverksky pr., 49 
+7 (812) 232-43-18 

alserg@rain.ifmo.ru

Sergey Kazakov, Fedor Tsarev 
St. Petersburg State University of IT, 

Mechanics and Optics 
Russia, St. Petersburg,  

Kronverksky pr., 49 
+7 (812) 232-43-18 

{svkazakov,tsarev}@rain.ifmo.ru 

 

ABSTRACT 

In this paper, we describe a genetic algorithm for induction of finite 
automata with continuous and discrete output actions. Input data for 
the algorithm is a set of tests. Each test consists of two sequences: 
input events and output actions. In previous works output actions 
were discrete, i.e. selected from the finite set, in this work output 
actions can also be continuous, i.e. represented by real numbers. 
Only the structure of automaton transitions graph is evolved by the 
genetic algorithm. Values of output actions are found using 
transition labeling algorithm, which aim is to maximize the value of 
fitness function. New transition labeling algorithm is proposed. It 
also works with continuous output actions and is based on equations 
system solving. In case of proper selection of fitness function, 
equations in this system are linear and it can be solved by the 
Gaussian elimination method. The unmanned airplane performing 
the loop is considered as an example of the controlled object. 

Categories and Subject Descriptors 

I.2.2 [Artificial Intelligence]: Automatic Programming – 
program synthesis. 

General Terms 

Algorithms. 

Keywords 

Genetic Programming, Finite Automaton, Finite Automaton 
Induction, Continuous Output Actions. 

1. INTRODUCTION 
In the context of automata-based programming [1, 2] the behavior of 
software systems is described with so called automated controlled 
objects. Each automated controlled object consists of a controlled object 
and a finite automaton. The automaton takes events and variables as an 
input and outputs so called output actions for the controlled object. For 
many problems finite automata can be built manually, but there are 
problems for which manual construction is very difficult. Examples of 
such problems are “Artificial ant” [3, 4] and unmanned aircraft 
control [5]. 

There are several approaches to the latter problem. One of them is 
the induction of “ideal” trajectory from several flights performed by 
a human pilot [6]. Other approach is the usage of genetic algorithms 
for finite automata design [7–11]. In the paper [12] genetic 
algorithm is used for generation of top-level finite automaton for the 
unmanned aircraft control. The fitness function in [12] is calculated 
with behavior modeling of the unmanned aircraft in the 
environment. That modeling is a very time-consuming process and 
the fitness function evaluation for one automaton takes about 5 
minutes. Therefore, all the process of evolving automaton may take 
several days or even months. 

The goal of this paper is to describe the genetic algorithm for finite 
automaton induction which does not use modeling for the fitness 
function evaluation. It is proposed to use tests to describe the 
behavior of the controlled object. Tests are recorded during the 
control by a human. If enough tests are given as an input then it is 
expected that inaccuracies of the human control can be eliminated. 
This approach extends the approach described in paper [13] (only 
discrete output actions are considered there). In this paper output 
actions can also be continuous (represented by real numbers).  

2. PROBLEM DEFINITION 
The input data for the genetic algorithm is a set of tests which 
structure is described in the section 2.2. The goal of the genetic 
algorithm is to construct the finite automaton which behavior on 
these tests is as close as possible to the desired one. 

2.1 Controlled Object 
Controlled object is characterized by the set of its state parameters 
and the set of its controls. State parameters are called input 

parameters later on. E.g., if the controlled object is an airplane, 
one of the state parameters is its altitude. Parameters associated 
with controls are called control parameters. E.g., if the controlled 
object is also an airplane, one of the controls is the starter, another 
one is the control column. An example of the control parameter is 
the aileron angle, another one is the elevator angle. Some of the 
control parameters are discrete, i.e. their values are selected from 
some finite set (corresponding controls are called discrete 

controls), while other control parameters are continuous, i.e. their 
values are real numbers (corresponding controls are called 
continuous controls). Output actions changing discrete parameters 
are called discrete actions, and changing continuous parameters 
are called continuous actions. At each moment of time the value 
of the control parameter is the cumulative value of corresponding 
actions for previous moments of time. 
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A continuous action changes the control parameter by some value 
and a discrete action sets the parameter to some value. Note that 
consecutive continuous actions are equivalent to the sum of these 
actions and consecutive discrete actions are equivalent to the last 
one. E.g., one of the continuous control parameters for the 
unmanned airplane is the aileron angle. The aileron rotation by 
some angle is a continuous action for this control. So, consecutive 
rotations by angles x and y are equivalent to one rotation by the 
angle x+y. An example of the discrete control is the starter. There 
are two discrete actions for it: “turn on” and “turn off”. A 
sequence of these actions is equivalent to the last of them. 

2.2 Training data 
Each test T consists of two parts: T.in and T.ans (see Figure 1). 

 

Figure 1. Test structure. 

Each of these two parts is a sequence of length T.len: first of them 
contains values of input parameters and the second one contains 
reference values of control parameters recorded during human 
control. Each element T.in[t] of the input sequence contains P 
numbers: values of parameters at the moment of time t. Each 
element T.ans[t] contains two collections of numbers: T.ans[t].d 
and T.ans[t].c. Collection T.ans[t].d contains values of D discrete 
parameters and T.ans[t].c – values of C continuous parameters. A 
sequence of control parameters produced by a finite automaton on 
test T will be denoted as T.out. Its structure is the same as 
structure of T.ans. The test number i will be denoted by T[i] later 
on. Total number of tests will be denoted by N. 

2.3 Automaton-controlled object interaction 
First of all, we define a predicate. A predicate is a statement about 
the controlled object state that can be written as mathematic 
formula. That formula can depend not only on input parameters at 
the current moment of time, but also on parameters of states in 
previous moments of time. E.g., the predicate can be “the airplane 
is descending”, that is, current airplane altitude is strictly less than 
the previous one. The list of predicates that can be used is 
automaton is composed manually before running the genetic 
algorithm and is not changed during the run. 

The main scheme of the interaction is shown on Figure 2. 

 

Figure 2. Automaton and controlled object communications. 

In the beginning of each time step “Predicates’ values calculator” 
receives values of each input parameter and calculates values of 
each predicate. Values of these predicates are processed by 
automaton in ascending order of their numbers. After getting a 
sequence of actions from the automaton, one resulting action is 
calculated. This action is applied to control parameters and their 
new values are sent to the controlled object. 

3. Genetic algorithm 
The proposed method differs from the classical genetic algorithm 
by an additional step which is done before the fitness function 
calculation – the transition labeling algorithm. This algorithm is 
similar to the one proposed in [14] and [15], but it works not only 
for discrete actions but for continuous as well.  

3.1 Individual Representation 
A finite automaton is represented as an object containing 
descriptions of transitions for each of the states and the initial 
state. The number of states is fixed and is the same for all finite 
automata generated during one run of the algorithm. The guard 
condition is specified for each transition. This condition has one 
of two forms: either “xi” or “¬xi” where xi is the i-th predicate. 
Output actions are not specified on transitions, that is, an 
individual is just a “skeleton” of a finite automaton. Concrete 
actions are to be determined by the transition labeling algorithm. 
An output action on one transition consists of a D–tuple of actions 
on all discrete controls and a C–tuple of actions on all continuous 
controls. Skeleton is represented with the full transition table: for 
each state and each value of each predicate (value can be “true” of 
“false”) there can be a transition.  

3.2 Fitness Function 
A fitness function represents how close the behavior of the 
inducted automaton is to the desired one. It is calculated using the 
following formula:  
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To calculate it, each of the N input sequences T[i].in is given to 
the automaton as an input and corresponding output sequences 
T[i].out are recorded. In the formula above 0 is a sequence of zero 
controls and ρ(out, ans) is a denotation of a distance between 
sequences of control parameters, which is calculated using the 
following formula: 
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Here D stands for the number of discrete controls, C – continuous. 

As mentioned above, before calculating the fitness function the 
transition labeling algorithm is applied to an individual. Its goal is 
to find values of output actions leading to the maximal possible 
value of the fitness function for the “skeleton” represented by the 
given individual. 

3.3 Transition Labeling Algorithm 
First of all, for the purpose of the transition labeling all transitions 
of the automaton that is launched on all tests are recorded. To 
maximize the fitness function it is sufficient to minimize the 
following sum: 
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Sums corresponding to different control parameters can be 
minimized independently. Therefore, we need to minimize the 
following sum:  
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for each k in the range [1 .. D] and the sum:  
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for each m in the range [1 .. C].  

To find the values of discrete parameters we can rewrite the first 
expression in the following way:  
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by grouping items corresponding to each transition. Here Timei,j 
consists of such values of t, that the last transition performed by 
the automaton on the test i equals to j, and n stands for the 
number of transitions in the automaton. This transformation 
implies that we can minimize sums 
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range [1 .. n]. 

Now notice that T[i].out[t].d[k] equals to the value of the k-th 
discrete parameter on the j-th transition when t belongs to 

j,i
Time . 

Let's denote it by u and group items with the same value of 
T[i].ans[t].d[k]. These transformations give us: 
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Here vh stands for the value of the h-th discrete parameter, G is the 
number of possible values of this parameter, TimeVi,j,h consists of 
such values of t from Timei,j that T[i].ans[t].d[k]  equals to vh. 

Let's denote the chosen value of the k-th discrete parameter on the 
j-th transition by vm. This gives us: 
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Thus, to minimize this expression we should choose m equal to 
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To find values of continuous parameters firstly notice that the 
value of the m-th continuous parameter at the moment t (which is 
T[i].out[t].c[m]) equals to the sum of the parameter initial value 
(that is 0) and amounts of its changes on all transitions performed 

before this moment, that is, ∑
=

=
n

j
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1

, ][][].[].[ α . Here 

uj stands for the amount of change of the m-th continuous 
parameter on the j-th transition, and ]t[j,iα  is the number of 

times the j-th transitions had been performed before the time t on 
the test i. So, we should minimize the following sum: 
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for each m in the range [1 .. C]. 

The partial derivative of S with respect to uh looks as follows: 
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After equating each of the derivatives to zero we get the following 
system of equations: 
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It is necessary to notice that this system is linear which makes it 
easy to solve. This linearity is caused by the structure of the 
chosen fitness function. 

4. Experiments 
In order to check the efficiency of the method proposed the 
problem of generating an automaton to control the plane 
performing the loop trick is used. FlightGear airplane simulator 
(http://flightgear.org) is used to model the airplane being 
controlled. This software allows automated control of the airplane 
as well as manual and it can record control parameters as well as 
parameters of the flight. The problem is to generate an automaton 
that can be used to control the plane performing the loop and then 
continuing to fly ahead. 

4.1 Usage of the method proposed 
The following steps were performed: 

• a set of predicates to describe the plane state was created; 

• three independently used sets of tests were recorded: each 
set consisted of 10 tests; each test consisted of a few 
thousands input-output parameters sets; recording of 
parameters was performing 10 times per second; 

• the algorithm was run for several tests sets and several 
algorithm parameters: population size – 100 individuals; 
the automaton contained not less than 2 and not more than 
5 states; mutation probability was 0.5 and 0.1; selection 
strategy – tournament selection, crossover – generic 
automaton crossover, mutation – generic automaton 
mutation; elite size – 2 individuals; 

777



All runs were performed on one core of Intel Core 2 Duo T7250 

processor of the computer with OS Microsoft Windows XP. The 
average running time of the algorithm was about 10 hours. This 
time was sufficient to generate about 2000 generations. That 
implies that the average individual processing time was about 0.2 
sec. This is significally less than in paper [12]. 

The chosen predicates were: x0 – the engine is turned on; x1 – 

speeding-up of changing direction of plane moving is greater than 
zero; x2 – speed of changing direction of plane moving is greater 
than zero; x3 – the value of deviation from the initial direction is 
less than 1 degree; x4 – the value of deviation from the initial 
direction is greater than zero;; x5 – speeding-up of changing of 
plane heeling is greater than zero; x6 – speed of the changing of 
plane heeling is greater than zero; x7 – plane heeling is small (less 
than 1 degree); x8 – plane heeling is positive; x9 – speeding-up of 
changing the vertical speed of the plane is greater than zero; x10 – 

speed of changing the vertical speed of the plane is greater than 
zero; x11 – vertical speed is small (less than 0.1 m/sec) x12 – 

vertical speed is positive. The list of controls included magneto, 
starter, throttle, ailerons, elevator and rudder. While the first two 
controls were discrete, the others were continuous.  

The results of running algorithms with different parameters 
showed that automata with 3-4 states were rather good and that 
more states automata had, the less understandable became its 
structure and also its behavior became worse. 

4.2 Results 
Genetic algorithm was run about 50 times and the best automaton 
was recorded for each run. These automata were analyzed by 
authors by watching its flight, and the best one was chosen. This 
automaton has 4 states and 68 transitions.  During analyzing this 
automaton authors noticed that depending on some external 
conditions automaton performed the loop in three different ways. 
In the most common case the plane performed exactly one loop 
and then continue flying smoothly. Sometimes the plane 
performed two loops one by one. It was explained by the fact that 
the environment state after the first loop could be so close to the 
one in the beginning of the test that the automaton couldn’t 
distinguish them. It also seemed possible for the automaton to 
perform more than two loops, but authors had never seen this 
case. Sometimes the plane failed to perform the loop but this 
behavior was very rare. Determing the exact conditions that imply 
the behavior of the plane is to be investigated. 

5. CONCLUSION 
A genetic algorithm for induction of finite automata with 
continuous and discrete output actions was proposed. This 
method was successfully tested on the real problem. Results 
showed that the generated automaton can provide better behavior 
than human. As compared with [12], this method provides much 
faster way to calculate the fitness function. Besides this 
advantage, the fitness function used in this method is much more 
general than the one used in [13]. Therefore, there is no need to 
modify when changing the controlled object. 
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