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Abstract—This paper discusses foundations of a technique for algorithmization and programming of problems
of logical control. The technique provides an increase in “safety” of software and can be called a state-technique
or, more precisely, an automaton-technique. The corresponding field of programming is called automaton pro-

gramming.

INTRODUCTION

This paper presents a technique for algorithmization
and programming of problems of logical control called
switch-technique. The urgency of its development is
dictated, first, by the necessity of unambiguous and
complete mutual understanding for the Customer,
Technologist (Designer), Developer, Programmer,
Operator (User), and Inspector, and, second, by the
advisability of developing a unified approach to formal
and a desirably isomorphic construction of “well-
understandable” algorithms and programs for different
types of controlling computers and programming lan-

¢ guages able to solve problems of the class considered.

This issue is also urgent for the other classes of
!—% problems. For instance, in [1] [ Dijkstra writes:

"On the one hand, I knew that programs could
have a compelling and deep logical beauty. On
the other hand, I was forced to admit that most
programs are presented in a way fit for mechani-
cal execution. Even if of no beauty at all exists,
totally unfit for human appreciation. A second
reason for dissatisfaction was that algorithms are
often published in the form of finished products,
" while the majority of the considerations that had
played their role during the design process and
should justify the eventual shape of the finished
program were often hardly mentioned f

The progress in solving this problem for tasks of
logical control is particularly important in connection
with the great responsibility of their solution for many
control objects, e.g., for nuclear or chemical reactors.
One of the prerequisites of this progress is the advanced

thematical technique of the theory of automata.

‘ In the context of the technique developed, it is pro-
. - posed to use two levels of languages, namely, lan-
s guages of algorithmization (ALs) or specification

' (communication languages) and programming ones
(implementation languages). Languages of these
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classes may both coincide (if a translator from an AL is
available) and differ from each other.

For example, in a hardware implementation of logi-
cal control systems on the basis of switching circuits, as
a language of algorithmization, functional diagrams
(FDs) were used, and, as an implementation language,
switching circuits (SCs) were employed. However, bad
“readability” of both FDs and SCs led to the need for an
intermediate language, namely, the functionally sche-
matic diagrams. These diagrams reflect in the switching
form only the control algorithm and do not contain
other information typical for schematic diagrams (e. g
the designation of connectors, damping resistors, mon-
itoring devices, and so on). At the same time, although
these diagrams are notably convenient for representa-
tion of memoryless automata, they are difficult to read
for automata with memory since the diagrams of this
sort usually rather implement the dynamics of jumps
and state changes of a synthesized automaton, than
reflect it in their structure.

In software implementation on the basis of the

- Selma-2 hardware produced by ABB Stromberg (Fin-

land) [2], for both an algorithmization language and a

programming language, functional circuits are used.

For the Autolog programmable logical controllers

(PLCs) produced by FF-Automation (Finland) [3], the

ALPro language of instructions are used as a program-

ming language, while the algorithmization language is

not specified. It is also not specified for many other

types of PLCs (such as Melsec of Mitsubishi Electric

(Japan) [4]) whose programming languages are the lan-

guage of instructions and ladder diagrams® language, c(/

and which provide a language of switching circuits sup- (2 «é

plemented by a great number of computing operations. ““P“%
Presently, with algorithmization languages in sys- ’

tems of logical control, the ladder and functional dia-

grams, as well as flow diagrams of algorithms, also

called graph diagrams of algarithms (AGDs) or dia-

grams of algorithms are most frequently used. For pro-
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gramming languages, three types of languages are used
depending on the types of controlling computers,
namely, high-level algorithmic languages (for example,
C, Pascal, PL/M, and Forth), low-level algorithmic lan-
guages (assembler and languages of instructions), and
special-purpose languages (for instance, functional and
ladder diagrams).

Below, we substantiate the advisability of the use of
controlling graphs (jump graphs) as an AL for descrip-
tion of algorithms with memory. We also propose a uni-
fied methodological approach to the implementation of
these algorithms on the basis of programming lan-
guages of different types. This makes it possible to pro-
duce for such languages the same algorithmic descrip-
tion independent of the type of controlling computer
employed.

In logical control, we can use conventional (classi-
cal) methods of formalization of both control proce-
dures and descriptions of control objects, which distin-
guishes this class of problems, e.g., from the case con-
trol [5].

For important technological objects, we can use sys-
tems of logical and case control in combination.

1. CLASSICAL LANGUAGES
OF LOGICAL CONTROL

1.1. Boolean Functions, Truth Tables,
and Decision Tables

In logical control systems, Boolean functions
(BFUs) and systems of BFUs given in the form of truth
tables (TTs) for completely defined functions and deci-
sion tables (DTs) for incompletely defined functions
are conventionally used. Note that TTs that describe
automata with memory are called coded jump tables or
coded transition and output tables.

Application of TTs is restricted to problems of a low
dimension and the use of DTs is limited basically by
memoryless automata (combination diagrams). Table
representation of automata with memory is not easy-to-
interpret.

1.2. Boolean Formulas and Other Analytical Forms
of Representation of Logical Control Algorithms

The analytical form of representation of Boolean
functions is provided by Boolean formulas (BFs) and
systems of BFs (SBFs), which make it possible to
describe combination diagrams as well as automata
with memory of a large dimension. SBFs can be iso-
morphically represented by ladder or functional dia-
grams. Sometimes, it is also possible to use other forms
of analytical representation of Boolean functions, for
example, threshold [6], spectral [7], or arithmetic [8, 9].

The main limitation on the use of SBFs for automata
with memory is the poor obviousness of these func-
tions.

1.3. Functional Diagrams

The advantages of FDs in their use as an algorith-
mization language are conventionality and the unique-
ness of description including parallel processes.
Among their disadvantages are: (1) the use in most
cases of binary internal variables stored in triggers,
whereas they are implemented by hardware tools that
allow us to process many-valued variables; (2) the
impossibility to show the values of output and input
variables in the diagram; (3) a complexity of their read-
ing (understanding) to completely represent the
sequential process implemented by them; (4) the prob-
lem of choice of tests for their complete check; (5) the
complexity of guaranteed modifications.

Note that reading of functional diagrams is replaced
with computations for individual circuits to determine
values of the output variables for different sets of input
variables. In this situation, even for a comparatively
small number of inputs, it is very difficult to find out
basing on the functional diagram what factors affect on
one or another transition in this diagram and to com-
pletely represent the behavior of even a comparatively
small fragment of the circuit when triggers and feed-
backs in this fragment are applied. For instance, for a
circuit with three interconnected triggers, it is very dif-
ficult to directly find out (without calculations) basing
on this circuit how many states it implements, because
three triggers can code from three to eight states.

It should be noted that the use of input—output rela-
tions (which provide completeness of checking for
memoryless circuits) as tests does not solve the prob-
lem of analyzing all functionalities for circuits with
memory implemented by application of feedbacks
(automatic interlocking) and/or triggers since, in this
case, it is also necessary to check the validity of the
order of changes of variables. However, despite this, it
is these relations that are applied presently in develop-
ing methods for checking the operation of the majority
of logical control systems. This does not guarantee
their proper checking because these methods do not
allow us to analyze all jumps on the set of states of the
circuit. Moreover, these transitions are not known since
the construction of circuits of this class of systems is
usually carried out heuristically, without the use of the
concept state.

Functional diagrams in their application as a pro-
gramming language have all advantages of declarative
languages of functional programming [10]. This book
states that their main advantage is their functionality
(referential transparency), i.e., each expression defines
a single value, and all its references are equivalent to
the value itself. The fact that one may refer to an
expression from another program unit has no effect on
a value of this expression. This property defines a dif-
ference between mathematical functions and the func-
tions that can be written in procedural programming
languages (such as Pascal), which enable functions to
refer to the global data and use “destroying” assign-
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ment. This assignment may lead to side effects, e.g., to
a change of the value of a function in its call even if the
values of its arguments have not been changed. Such a
function is difficult to use since to determine the value
obtained in its computation, it is necessary to consider
the current values of the global data. In its turn, this
requires us to analyze the prehistory of computations to
assess what generates this value at every instant.

Under specific conditions (renotation), in systems
of Boolean formulas employed in the construction of
functional diagrams, even for automata with memory, it
is possible to provide another advantage of declarative
languages, namely, the independence of results from
the order of calculation of formulas.

1.4. Temporary Diagrams and Cyclograms

The merit of these forms of representation of algo-
rithms consisting in the representation of the dynamics
of processes and their disadvantage is the practical
impossibility to provide information of all feasible val-
ues of output (and, especially, internal ones) variables
even for problems of a relatively low dimension. There-
fore, in practice, these diagrams are usually constructed
for the description of the “basic” mode and the entire
algorithm is specified only in the program, which, for
this reason, in many respects, is informally constructed
basing on the diagrams.

1.5. Graph Diagrams of Algorithms

One of the merits of AGD:s in their use as an algo-
rithmization language for systems of logical control is
a possibility of representation by them in an explicit
form of the sequence of events (defined by values of
input variables) and reactions to their appearance (pre-
sented in the form of the values of the output variables
including those calculated in parallel). The availability
of binary values of variables written in an explicit form
in operator nodes dramatically simplify the understand-
ing of AGDs (in this case, they are called automaton
AGDs) compared to functional diagrams.

AGDs have the following disadvantages:

(1) In the literature, two kinds of automaton AGDs
are used. For graph diagrams of the first kind it is
implicitly supposed that the input of input variables is
performed at each conditional node and the output of
values of output variables is carried out at each operator
node [11]. For graph-diagrams of the second kind it is
supposed that the input of input variables is performed
at the beginning of the body of the graph diagram and
the output of values of output variables is carried out at
the end of this body. The use of the operators input and
output in the explicit form in such AGDs makes it pos-
sible to differ the versions of graph diagrams specified
above.

(2) There are no requirements on what the graph
diagram must represent. The alternatives are as follows:
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a control algorithm (AGDs with internal feedbacks, but
without internal variables); an algorithm of execution
of the control algorithm (AGDs without internal feed-
backs); an algorithm that takes into account the proper-
ties of control structures of the programming language
employed (AGD that is linearized and structured, prob-
ably, in a special way); an algorithm of execution of a
program (AGD, in which components of the processor,
for example, accumulator, are mentioned).

(3) There are no requirements on their organization
(except structuring (structurization)) that guarantee the
ease of “reading.”

(4) The necessity (in the general case) of their mul-
tiple transformations to provide the possibility of solv-
ing several problems by one control computer (uncyc-
ling) and the account for the properties of control struc-
tures of the programming language (for instance,
linearization and structuring).

(5) The availability of internal (intermediate) vari-
ables absent in the “verbal algorithm” of logical control
(these variables that dramatically complicate the read-
ing of AGDs by other Specialists different from the
Developer, and, especially, by the Customer).

(6) Common use of a great number of bit internal
variables, each of which not only has to be set, but com-
pulsorily dropped as well. These variables characterize
only individual components of states of an automaton,
and its entire states are usually not described. The use
of these variables is natural in hardware implementa-
tion of algorithms, but, in their implementation by pro-
gramming languages that enable us to process many-
valued variables the application of bit internal variables
is inexpedient.

(7) The availability of flags and default internal and
output variables at operator nodes. This hinders reading
of AGD in view of the necessity to remember the pre-
history, especially, in the cases where values of vari-
ables at these nodes change depending on the ways by
which one may “arrive” at the node considered.

(8) Checking the values of only individual binary
variables at conditional nodes. This leads to an awk-
wardness of AGDs.

(9) The link of operator nodes through conditional
points. This hinders modifications, because modifica-
tion of the conditions for transition between two opera-
tor nodes has influence on conditions of jump at other
nodes of this type.

In the application of AGD, for most cases going
from algorithmization to programming for complex
problems of logical control there is a serious difficulty.
This is explained by the fact that, usually, a process of
algorithmization rarely, if ever, is completed properly,
i.e., by the generation of an algorithm in a mathemati-
cal sense, which, by definition, must be uniquely exe-
cuted by any Computer and ends only with a “pattern”
called an algorithm. This pattern is to be supplemented
to some extent in programming (for example, it may be
necessary to structure an AGD or introduce uncondi-
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tional jumps into an unstructured program). In that sit-
uation, either the Developer has to program himself or
the Programmer has to know all specificities of techno-
logical process, or they together have to eliminate
unavoidable errors of the conventional program design
during tests.

Eét us consider in more detail default values of input

variables at operator nodes of automaton graph-dia-
grams.

Automaton AGDs of the first type are split into two
classes. For the first class, at each operator node, the
notation of only those output variables or their inver-
sions that take at it only unit values is presented. The
other output variables take zero values by default. For
the second class of graph diagrams of this type, it is typ-
ical that each operator node, the notation of only those
output variables or their inversions that take at the node
unit and zero values, respectively, is presented. For
every not specified variable, it is assumed that the node
holds the previous value.

’ For automaton AGDs of the second type, at each

operator node, the notation of those output variables,
that take at this node fixed values, is indicated in the
explicit form, and the renotation of those output vari-
ables that hold at this node the previous value may be
also presented. It is assumed that each of the unspeci-
fied variables holds its previous value.

For automaton AGDs (except for the first class of
the first type), there is also the possibility to store the
previous values of all output variables on “wires”, i.e.,
without the use of operator points in a corresponding
circuit of a graph diagram.

The possibility to store the previous values of output
variables at operator nodes or without the use of them
hinders dramatically the understanding of graph dia-
grams.

The considered language is employed by the Opto
firm (USA) for programming of PLC Mistic [12]. The
use of an AGD in the form of Nassi—-Shnenderman dia-
grams [13] does not eliminate practically the men-
tioned disadvantages.

3

ﬁ

1.6. Logical Diagrams of Algorithms
ALDs proposed by AA|l Lyapunov [14] are the

3 string form of the notation of the linearized ALDs

(LALDs) and are formed by letters (that correspond to
conditional, unconditional, and operator nodes of
LALDs) and are enumerated by arrows that indicate
jumps executed if the conditions are not satisfied.

£ ”ALDs provide a compactness of a description, but

they suffer from the lack of obviousness and are very
difficult to read.
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2. UNCONVENTIONAL LANGUAGES
OF DESCRIPTION OF LOGICAL-CONTROL
ALGORITHMS

2.1. SDL

The ideas of the theory of automata were employed
in the Specification and Description Language (SDL)
[15] developed by International Commission on Tele-
phony and Telegraphy whose diagrams are similar to
AGD:s at the first glance, but differ from them by intro-
ducing states into these diagrams in an explicit form.
However, SDL-diagrams are very cumbersome and
correspond to only one class of automata, namely,
Mealy automata [11], which results in serious disad-
vantages.

A—)-
2.2. R-Charts

Another model based on Mealy automata is pro-
posed by FV Vel’bitskii [16]. This model is called
R-chart. An R-chart is oriented graph with weighted
arcs depicted by vertical and horizontal lines and con-
sisting of structures with only one input and output.
Charts of this class have two types (one of them is spe-
cial) of nodes and arcs along with certain types of con-
nective lines. R-charts are formed by three types of
connections: sequential, parallel, and nested.

This language makes it possible to reflect the struc-
ture of algorithms in a more compact form compared to
AGDs. However, the application of the nonstandard
notation and of only one type of automaton models
restricts the use of these charts.

2.3. Petri Nets and Operation Graphs

For a description of complex processes including
parallel ones, in 1962, A{ Petri [17] proposed a graph
model named after him. The model consists of nodes of
two types, namely, positions and jumps connected by
edges, and two nodes of the same type cannot be
directly connected. To reflect the dynamics, a set of
labels placed at positions is introduced. If all positions
connected by entering arcs with a jump are labelled,
then this jump comes into action and the labels jump
into positions connected by outgoing arcs with the
considered. For purposes of control, $-A] Yudit-

Jup o
@(ﬂ [18] proposed to employ only safety and living

Petri nets (PNs). Positions of a safety PN cannot have
more than one label. Living PNs have the fundamental
possibility of operating at any jump. Let us call the
specified class of PNs controlling Petri nets. Petri nets,
in which each jump has only one entering and outgoing
arc are called automaton Petri nets.

. As a model for description of control algorithms,
&1’:.! Yuditskii [18] proposed to employ operation
graphs (OGs). They are controlling Petri nets in which
positions and jumps are labelled by values of the output
and input variables, respectively. For a description of
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hierarchically constructed algorithms, he proposed to
use systems of embedded OGs.

The advantage of operation graphs is a possibility of
description (in an obvious graphic form including the
form of one component) of complex control algorithms
possessing parallelism, whereas their limitations and
disadvantages are as follows:

(1) Parallel processes in the majority of cases must
be synchronized, whereas, for many algorithms of log-
ical control, this is not necessary. -

(2) For OGs constructed on the basis of automaton
Petri nets only a model of a Moore automaton [11] is
employed, and it is impossible to employ other autom-
aton models. This dramatically restricts the graphic
possibilities of the operation graphs.

(3) For coding of positions, we may employ only
“unit” codes. In this case, the number of internal vari-
ables (without taking into account their renotation) is
equal to the number of positions including positions for
operation graphs constructed on the basis of automaton
Petri nets. Note that, for this class of graphs, all posi-
tions may be coded by a single many-valued variable if
the approach proposed in this paper is applied.

(4) In the implementation, the system of embedded
operation graphs is transformed into a single compo-
nent, while, when using the proposed approach, the
number of components in the description and imple-
mentation can be the same.

(5) It is recommended that one label the positions of
operation graphs rather than those values of input vari-
ables that are changed in a corresponding position by
all their values. Due to the use of defaults, in the general
case, the complexities of description of the algorithm
and its behavior are different. This hinders the reading
of the algorithm and the analysis of all its functional-
ities.

2.4. GRAPHSET

This graphic language elaborated in the Space
Research Center in Toulouse (France) is used now in
parallel with the other languages [19] by different firms
such as Telemecanique, (France), Siemens (Germany),
Allen Bradlay (USA), Toshiba (Japan), Omron (J apan).
This algorithmization language, given a proper lan-
guage translator, is a programming language as well.

GRAPHSET mainly differs from the language of
operation graphs by the form of representation. It uses
squares (instead of circles for the notation of positions)
and rectangles (for the notation of values of output vari-
ables) not presented in the operation graphs. Therefore,
all advantages and disadvantages of the language of the
operation graphs are also typical for GRAPHSET.
Translators from this language designed by different
firms (at least by the firms specified above for their own
control computers).

One of the advantages of GRAPHSET-diagrams
consists in the standardization of their representation:
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diagrams are placed primarily in the downward direc-
tion. Simultaneously, this is their disadvantage, since,
for integral (gestalt) human perception of “patterns,” it
is more expedient to use their planar representation (as
in graphs of jumps), which, for the reason mentioned,
makes it possible to represent algorithms more com-
pactly.

GRAPHSET, despite the above mentioned disad-
vantages, is incorporated into the software of PLCs
brought out by the world’s leading firms in the automa-
tion field. For example, Siemens gives an opportunity
to write programs for its PLCs using in the STEP-5 lan-
guage (languages of instructions, ladder and functional
diagrams) as well as in the S7-GRAPH_language
(GRAPHSET) [20, 21].

At the same time, experience suggests that having
several programming languages for the same PLC,
developers usually employ languages that are more
conventional for systems of logical control such as lad-
der and functional diagrams. In many respects, this is
because of the insufficient scientific and methodologi-
cal support of the use of controlling graphs for the spec-
ification of algorithms. Moreover, in the documentation
of many firms, it is usually proposed that one construct
ladder and functional diagrams heuristically without
preliminary description of algorithms by controlling
graphs. The efficiency of such graphs compared, for
instance, with ladder diagrams is demonstrated in rare
cases (Omron) only by examples without the presenta-
tion of the method of formal transition from a control-
ling graph to a “diagram.”

Note that, for different models of controllers of the
same firm [22], it is proposed that one employ different
languages (ladder diagrams for “lower” models and
GRAPHSET for “higher” ones). At the same time a
unified specification language is not used for all mod-
els.

The above-presented information is quite natural,

since, in the field considered even the terminology has
not been established yet. For example, the Sequential
Function Chart (SFC) term simultaneously means jump
graphs, AGDs (Opto), and GRAPHSET (Omron). In

&)

(?

H F(

3 (64

61'.
i

documenting Jelemecanique, it is noted that GRAPH-
SET-diagrams are known as SFC and, as specified nhpXAs.

above, Siemens uses for the same purpose another
term, namely, G

Furthermore, the SFC term does not reflect the main
characteristic property of the language considered, i.e.,
a possibility of representation in a single graph of pro-
cesses that are parallel in states. From the theory of
automata it is known that, in order for describing
sequential processes, one may use a deterministic-
automaton’s jump graph, which gives no way of reflect-
ing processes parallel in states.
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2.5. Problem-Oriented Languages Close
to the Natural Ones

There exist several task-oriented languages devel-
oped for logical control. They are intended for a formal
linguistic description of algorithms of the class consid-
ered. These languages are also called [23] primary,
since, in the opinion of the authors of the paper men-

._ tioned, they are primarily oriented toward(the Customer
abrs
Keag?

and have the developed descriptive tools and construc-
tions applied in the assignment of working conditions
in a natural language.

The specified advantage of these languages implies
a number of difficulties and disadvantages. The main of
which are the following:

(1) They require that Participants of the design study
the syntax and semantics of a new language (which is
of limited circulation) with a sufficiently large number
of constructions.

(2) They are constructed on the basis of rather a nat-
ural language (for instance, Russian) than of a mathe-
matical one.

(3) They have poor obviousness of “texts” com-
pared with graphs in the representation of structure,
interaction, and dynamics of processes.

(4) They do not allow us to verify formally the com-
pleteness, consistency, and lack of generation, as well
as to perform optimizing transformations.

(5) They require the development of a multilevel
jump system that uses different types of languages such
as core, automaton, and machine ones.

(6) They are oriented to a specific type of a core or
automaton language and a specific type of automata.

(7) The complexity of verification and lack of tests
for correctness of description.

(8) The complexity of correct modifications.

(9) Impossibility of their application if a translator
for the control computer exploited is not available.

Among the languages of the class considered, the
best theoretical justification is obtained by the follow-
ing languages of logical control and their modifica-
tions: Forum [24], Uslovie [25], Upravlenie [26], and
Yarus [27].

For example, the constructions of the Uslovie pri-
mary language are translated first into the core lan-
guage of the operator diagrams of parallel algorithms
with memory (this core language is a development of
AGDs) and, then, they are translated into the automaton
language, namely, the language of excitation and out-
put functions.

In the use of the Upravlenie language, by analogy
with labelling of an AGD for construction of automaton
[(11f, binary labels considered as states are introduced
in the source linguistic description (program code) of a
program. Then, according to the labelled description, a
Jump graph (JG) of Mealy automaton is constructed.

SHALYTO

Problems of minimization of the number of states and
parallel decomposition are solved on its basis [26].

The most approximate approach to that proposed in
this paper is employed in the development of the Yarus
language. Here, 0-F Kuznetsov proposed to use for
description of operation of “jtems” an automaton
model called a switch graph [28]. This model is a JG of
a Mealy automaton with a default of fixed values of out-
put variables. A possibility of reduction of the number
of nodes of this graph compared to the conventional
automaton models leads to the replacement of the
“state” term with the “situation” term. It is worth noting
that this simultaneously deteriorates the readability of
the graph because of the appearance of dependence on
the “deep” prehistory,

Contrary to the information presented above, for the
technique described in this paper, it is primary and the
formalized description is not a linguistic one, but
automaton description of sequential processes with the
help of transition graphs. The type of the JG, their num-
ber, method of coding, and interconnection are not
fixed in the general case and depend on the problem
solved. Clearness of such a description for the Cus-
tomer is provided by the riser and simplicity of syntax
of this language in the description of the statics and,
above all, of the dynamics of the processes. The dia-
gram of connections control automaton (CA)—control
object (CO) (this diagram must define semantics of
every external variable employed in a JG) has to be also
developed. The application of a JG without flags and
defaults [29] makes it possible to provide directly in the
description of a process its correctness and use it as a
test for verifying a formally written program. At the
cost of elimination of flags and defaults, the modifica-
tion of the program is simplified and the dependence on
the deep prehistory is eliminateq (further, the prehis-
tory is the future that depends on the present, but does
not depend on the past).

Clearness of algorithms and programs developed on
their basis improves even more if the dependence of
values of the output variables on the values of the input
variables is also eliminated. This is achieved by the use
of the JG of the Moore automaton whose values of the
output variables depend only on the number of the
automaton’s state.

A jump graph of an automaton of this type is
directly constructed or obtained from a transformation
of the jump graph of an automaton of another type. For
example, in terms of a JG of a Mealy automaton one
may construct a JG of an automaton without an output
transformer, which is a graph of accessible labelling of
the source graph, which, in its turn, is transformed very
simply into the JG of a Moore automaton.

We can assume that each node in the JG corresponds
to a state of an automaton of the considered type, for
which the graph is constructed, and a state of the mem-
ory of a computer provides software implementation of
this graph.
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However, since the behavior of an automaton is
described most obviously by a JG, rather than a corre-
sponding graph of accessible marking [30], the actual
number of states of the automaton coincides with their
number of this graph or of the equivalent to it, a JG of
a “conventional” (without flags and defaults) Moore
automaton.

Thus, if, in the general case, a JG can be considered
as a coded (the number of nodes of the JG may be suf-
ficiently less than the number of actual states of the
automaton) and, therefore, compact description of the
behavior of the automaton, then a JG of the classical
Moore automaton in many-valued coding of its points
nodes (at the same time, this JG is a graph of its acces-
sible labelling) is the most clear. It is precisely a JG of
this type that we propose to be employed as a basic
specification language for problems of logical control.

In the technique developed, a transition to a linguis-
tic description is executed in algorithmization, rather
than just in programming and only on the basis of algo-
rithmic languages. In this case, all structural specifici-
ties and properties of selected automaton model have to
remain the same as possible in the program text. This is
guaranteed only for a unique and, above all, isomorphic
transition from the JG approved by the Customer to a
program. Here, programming is performed in a unique
way. Unapproved modifications of the algorithm are
unacceptable.

In applying the technique proposed, it is possible to
provide an agreement between the program text and the
order of its execution, and to implement the procedure
of stepwise refinement in accordance with the require-
ments of structured programming [31] together with
the use of concepts of object and class, as in the con-
ventional object-oriented programming [32].

2.6. Algorithmic Programming Languages

As is clear from the presented above, high-level and,
especially, low-level algorithmic languages are appro-
priate in solving problems of logical control only at the
stage of isomorphic transition from the automaton
description to a program text, because, otherwise, many
of the above mentioned problems arise, as applied to
the use of problem-oriented languages for primary
description.

3. JUMP GRAPHS AS A SPECIFICATION
LANGUAGE

3.1. Strategies of Synthesis of Logical-Control
Algorithms

There exist two strategies of construction of algo-
rithms of this class. In applying the first of the strate-
gies, it is supposed that the algorithm of operation of
the control object is known, and it is necessary to syn-
thesize (in terms of it) a logical-control algorithm that
provides a given behavior of the object. As an illustra-
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tion, we present a fragment of an algorithm for control
of a valve synthesized in the manner shown above: “To
open the valve, a computer must send a unit signal to
the input of the opening actuator of the valve.”

In the second strategy, taking the information of the
state (position) of the controlling object, an algorithm
that provides the required operation of the control
object is constructed. For instance, “if the computer
sends a unit signal to the input of the opening actuator
of the valve, then the valve is opened.”

The first strategy is “directed” from a control object
to a computer and the second strategy has the opposite
direction, i.e., from the computer to the object.

The first strategy is based on the concept of a state,
and the second one is based on the concept of an event.

Presently, in the development of control algorithms,
for example, in the form of graph diagrams of algo-
rithms or in the form of productions (sequents) of the

“if...then” the second strategy is usually
employed. Hence, in the author’s opinion, the first strat-
egy is more natural for the considered class of prob-
lems: a state by its nature is static and an event is
dynamic, and, therefore, “control in states” is more
advisable than “control in events” [33].

However, in the general case, neither of these two
kinds of control is exhausting, and only “control in
states and events” is correct here. Because the concepts
of a state and an event incorporate the concept of an
automaton, such kinds of control may be called autom-
aton control, and its software implementation can be
called automaton programming.

For the technique proposed in this paper, the con-
cept of a state is primary and the notion of an event is
secondary (especially, taking into account that events
formed by a control object are dictated by the corre-
sponding states of this object).

Although, the second strategy usually leads to the
construction of faster and more compact programs, in
the absence of rigid limitations on the memory capacity
and performance the use of the first strategy is more
natural, since it corresponds to the main principle of
control employed in automated systems. This principle
implies that, in control, the Operator defines a state of
an object first and, then, executes a particular action
that gives rise to an event.

Under this organization of the control process, for
ease of reading and understanding of algorithms and
programs, they must also be organized in the same way.
The situation, when the control is organized in terms of
one principle and its software is implemented on the
basis of directly opposite ones is highly abnormal.

In the framework of the technique proposed, we
must use automaton control and programming, and the
construction of algorithms and programs has to start
from generating a decoder of states, rather than from
events [29], because in the control in events, essential
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problems associated with the introduction and correct
employment of internal variables arise.

In algorithmization, a state must be found based on
an integral representation assigning to each state a dec-
imal number considered as an indivisible component of
description rather than on individual binary compo-
nents.

If we assign to each state of the object the state of a
controlling automaton, to which, in turn, a node of the
JG is assigned, and construct the program that imple-
ments a jump graph of the automaton formally and iso-
morphically, then this program will be clear not only to
the Developer and Programmer, but to the Customer,
Technologist, Operator, and Inspector as well.

It should be noted that in spite of the complexity of
the construction of a model of the object, in most cases,
this model can also be described by jump graphs.
Therefore, in the framework of the approach proposed,
to verify the constructed algorithm, it is also expedient
to simulate a complex CA—CO. After that, the control
algorithm can be further refined by means of a physical
model and using an actual object. The accuracy and
detailedness of description of the algorithm by jump
graphs increases dramatically the quality of initial algo-
rithmization compared to other methods. That is why
on an object, it is usually required that one introduce
comparatively few modifications into the algorithm
developed and the corresponding program.

3.2. Factors that Restrict Wide Applicability
of Jump Graphs as Algorithmization Language

To eliminate disadvantages of the considered algo-
rithmization languages, it is proposed to use as this lan-
guage the jump graphs proposed more than forty years
ago for describing the behavior of automata with mem-
ory. Jump graphs are also called state diagrams or state-
jump diagrams.

However, in synchronous hardware implementation
of automata, this language was mainly applied for illus-
trations, since in most optimization algorithms of the
theory of automata a table representation of JGs,
namely, transition tables and transition and output
tables were employed. The structure of these tables
requires the enumeration of all combinations of values
for all input variables. This implies certain limitations
on the dimension of the problems solved.

Another problem, which restricts the use of JGs,
was associated with the fact that in the asynchronous
circuit implementation of logical control systems
because of the contradictions between the memory ele-
ments and an arbitrary way of change of sets of the
input variables, an actual behavior of the circuit may
significantly differ from the behavior of the model
(jump graph), by which the circuit was built. In the gen-
eral case, this calls for very cumbersome guiding cod-
ing associated with an excessiveness, which is often
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unacceptable for hardware and, especially, for switch-
ing implementation.

There is also another reason for this. Convention-
ally, it was supposed that JGs describe only sequential
algorithms, which are of highly limited application for
control systems characterized by parallelism.

The specified difficulties, as well as the traditions of
construction of functional diagrams in a hardware and
graph-diagrams in a software implementations of algo-
rithms, are, evidently, the reasons why JGs have not
been essentially used up so far as a specification lan-
guage of operation conditions in their software imple-
mentation.

3.3. Jump Graphs

The basic concept employed in the theory of autom-
ata is an internal state of an automaton. Below, instead
of this term we use the term “state” This concept,
which is one of primary importance in human behavior
(healthy—ill, full-hungry, and so on), for certain reasons
is not usually employed in the algorithmization and
programming of control processes (except for the
approach employed in object-oriented analysis [34]
and program products S7-HiGraph technique software
[21] and Modicon State Language [22]).

Under other approaches usually, the internal state of
Computer is either ignored or is not considered as the
entire thing. Note that, as in event—controlled program-
ming, only external events are checked and the actions
initiated by these events are performed as, for example,
this takes place for the following description of the
algorithm: “If the table is set, then Computer must have
its dinner.” This description is implemented by a mem-
oryless automaton, because, in this case, both the event
and the action are observable only from outside.

This example demonstrates that, as a rule, for cor-
rect description of an algorithm, external information
(the table is set) is insufficient, and that it is also neces-
sary to know the internal state of Computer (whether it
is full or hungry). The description takes the following
form: “If Computer is hungry and the table is set, then
Computer must have dinner.” At first glance, it seems
that the condition has been just quantitatively compli-
cated, and instead of one variable we have two vari-
ables. However, this is not the case: the situation is
completely different, since, now, the algorithm has the
internal variable that must be in the Computer memory.
Actually, it is unknown when this variable will be
requested (most likely, when the table is set). Hence,
together with the “combination diagram,” the internal
memory appears, and the “diagram” goes into the class
of automata with memory.

The use of JGs makes it possible to introduce the
concept of a state (in the explicit, namely, the graphic
form) into practice of algorithmization and program-
ming at least for problems of logical control along with
its use in the theory of finite-state automata, linear sys-
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tem theory [35], Markov processes [36], and in certain
problems of practical [37] and theoretical [38] pro-
gramming. JGs also allows one to represent in a
descriptive form the dynamics of jumps of automaton
from one state to another under a change of the input
factors with indication of values of all the output vari-
ables generated at each_state—for automata without
output transformer (A ), or Moore automata
(MOA), or at each jump (for Mealy automata (MEA)).

If, in an automaton, both the methods of generation
of output variables are used, then it is called “mixed”
(M-automaton (MA)). If the same variables are
employed in an automaton as the input and output vari-
ables, then this automaton is called an automaton with
flags [29].

It should be noted that the same sets of values of the
output variables may be formed in different states, and
this requires the introduction of additional (intermedi-
ate) variables for distinguishing these states.

The automaton states classify (decompose) all input
variables into groups selecting, in each of the states
only the subset (of these variables) that specifies the
required jumps from the state considered to be adjacent
states including the jump into itself. The input variables
that do not belong to the group specified by the state
have no effect on jumps from it into the other states,
i.e., the jumps from the state considered unessentially
depend (do not depend) on all other variables that do
not belong to the group. This provides an opportunity
to implement problems of a large dimension by JGs.

Located at a certain state, an automaton with mem-
ory turns into a corresponding memoryless automaton
(combination automaton). The latter automaton,
according to the values of the output variables ‘“chosen”
by this state, chooses one of the adjacent states to which
the considered one belongs. The new state “adjusts” the
automaton to the implementation (in the general case)
of another combination automaton. Thus, an automaton
with memory may be considered as a multifunctional
module that is adjusted by states to the implementation,
in a certain order, of different orthogonal systems of
Boolean formulas that describe combination diagrams
and depend on different groups of input variables.

On the other hand, an automaton with memory may
be considered as a multifunctional unit adjusted to
implementation by input variables (whose values “are
usually constant during a program cycle) of self-gov-
erning (without input variables) automata.

If there exist values of input variables chosen for
which the automaton retains its state, then this state is
called stable. Otherwise, the state is called unstable.

Nodes correspond to states of automaton JG, and
connecting arcs correspond to jumps from one state to
another (the nomenclature of components of a JG is
minimal). Note that a loop corresponds to the
unchanged state, in which an automaton remains as
long as the condition that labels the loop is fulfilled.
The absence of a loop demonstrates that a node is
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unstable. An automaton (A) may be at an unstable node
only for one program cycle. Usually, arcs are labelled
by Boolean formulas of the input and time (X and 7)
variables. Unit values of these formulas define the pos-
sibility of jumps. Let us call attention to the fact that
even a node having a loop can be unstable if the values
of the formulas that label one of its entering points and
one of its outgoing arcs that is not a loop are simulta-
neously equal to one.

The values of the input and time (Z and ¢) variables
are specified in an explicit (bit) form at nodes (for
ADOT and MOA), on arcs (for MEA), and at nodes and
on edges simultaneously (for MA). The binary vari-
ables ¢ control functional delay elements (FDEs), and
the binary variables T inform us about the operation or
nonoperation of these elements. We assume that FDEs
are not incorporated into automata and provide for one
of the control objects. The complex A-FDE forms a
unified component called a controlling automaton.

In the reading of a JG, it is supposed that at each
instant (in one program cycle) no more than one jump
is performed: zero if a state is retained and one if it is
not retained. This is provided by a corresponding soft-
ware implementation. :

In each strongly connected JG employed for logical
control, one source node that coincides with the termi-
nal node is chosen.

3.4. Construction of Transition Graphs

Assume that it is required to construct a JG that
describes the behavior of an automaton with » binary
inputs and m binary outputs. For problems of a large
dimension, a JG is usually constructed in accordance
with a verbal description of operating conditions of the
control object. In this description, the concept of state,
which is a mathematical abstraction, of course, is not
employed.

At the same time, if the formalization is performed
by JGs of Mealy automata most commonly used in the
literature for the description of examples of automata of
a small dimension, then it is necessary to introduce this
concept (abstraction) for distinguishing situations asso-
ciated with changes of values of the output variables for
the same values of the input variables. The construction
of a JG in “changes” poses the further difficulties of
their reading (understanding) and correction, because,
here, the values of the output variables depend not only
on the state, but on the values of the input variables
essential for the considered state as well.

If state is defined as a combination of values of the
all m output variables, and if the same combinations of
these variables are considered as different states, then
this definition is significantly less abstract and more
natural, since the concept of state, as it were, in the
explicit form is not used. In this case, it is possible to
have, at every state, information on the value of every
output variable. In the author’s opinion, this is the gov-
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erning factor what provides for further considerations
of simplicity of reading, understanding, and correction
of JGs.

At initial stages of construction of a JG, the number
of points in it must be chosen, so that each of them sup-
ports one of the states of the control object (including
states associated with its faults) or the control system
(for example, the states that correspond to improper
actions of the Operator). Below, if necessary, we may
try to minimize the number of nodes. Note that, in the
general case, the number of states in an automaton may
be less than the number of states of an object because
the same state of the automaton may support, by the
same values of the output variables, different states of
the object. For instance, a closed and opened state of a
valve “with memory” (its stable states) can be sup-
ported by both a two and one state of the automaton

¢ with zero values of the output variables.

Each combination of all output variables corre-
sponds to one point of a JG and labels it. Each node of
the JG is directly connected by arcs with those of its
nodes into which the automaton must jump if condi-
tions that label the arcs are satisfied. Note that even
neighboring nodes may be labelled in the same way. In
this case, a condition is matched by a Boolean formula
and fulfillment of the condition is matched by an equal-
ity of this formula to one with certain input sets. Note
that only one Boolean formula corresponds to each arc.
This formula depends on a subset of the input variables
that semantically define jumps from the considered
node into the adjacent ones, rather than on the all n
input variables. This allows us to construct JGs for

problems of a very large dimension.
f__

When using this technique of construction, given
operation conditions are implemented by a jump graph
of an automaton without an output transformer with the
forced [29] coding of states. Below, if necessary, this
graph, for example, given if there are nodes labelled
identically and there are no distinguishing input sets, is
transformed into a JG of an automaton of another type
with the explicit introduction of the concept of state
(the JG of a Moore automaton) or another type of cod-
ing (the JG of automaton without an output transformer
with the forced—free [29] coding of states). In this trans-
formation the structure of the initially constructed jump
graph remains the same. In particular cases, the account
for limitations requires us to use a JG of a mixed
automaton. This leads one to introduce, into a JG of an
automaton without an output transformer or into a con-
structed by it JG of Moore automaton the values of the
output variables (by ratio with a Boolean formula label-
ling the corresponding arc) generated in the jump. It
should be noted that a JG may always be represented as
a composition of a system of Boolean formulas of a
memoryless automaton (formed by the formulas label-
ling arcs of the JG) and the jump graph whose edges are
labelled by single letters and which replaces the corre-
sponding formula.

3.5. Description of Operation
of Memoryless Automata

The application of the presented technique allows
one to implement operating conditions, no matter
whether they correspond to an automaton with memory
or to a memoryless one. For automata with memory, the
construction of a JG in algorithmization is advisable,
since it reflects in an explicit form at least the state-
dependence (inherent for automata of this class) of the
set of the output variables. For memoryless automata
dependence of this sort is absent, and the values of the
set of the output variables at the instant considered
depend only on the set of the input variables at the same
instant. Therefore, for these automata there is no need
for application of JGs. Hence, if it is possible to find out
whether a JG describes a memoryless automaton or can
be reduced to it, it is appropriate to replace the JG, for
example, by a system of Boolean formulas.

3.6. Properties of Transition Graphs

One of the advantages of JGs is that they can be for-
mally tested for syntactical correctness (of course, the
semantic (sense) correctness cannot be tested for-
mally). A JG is correct if it is consistent, complete, and
free of generating circuits different from loops.

In addition, we assume that the consistency of a JG
is provided in the case if simultaneous jumps along any
two or more arcs outgoing from the same node are for-
bidden in it. If simultaneous jumps from the same node
are admissible, then such JGs (at each of them, the
simultaneous existence of several “active” nodes is
admitted) are called jump graphs with parallelism
(PJGs). PJGs differ from GRAPHSET-diagrams only
by the absence of a possibility to synchronize within a
single component of completion of parallel processes.
In the use of a system of interconnected JGs and a
description of each algorithm by a particular JG (by a
component), the synchronization of processes, if neces-
sary, is performed in the head jump graph. The behavior
of a PJG (dictated by the graph of accessible labelling,
which is the graph of jumps between all the possible
states of a component or a system of components) dif-
fers from its description—the PJG produces more than
its structure describes. —3

From this standpoint, JGs (without flags and
defaults that change depending on the prehistory of the
values of the output variables at one node or on one arc
of the graph) are analogous to parallel-serial contact
circuits, for each of which the Boolean formula that
describes its structure, simultaneously, defines its oper-
ation (behavior). Note that PJGs are analogous to
bridge contact circuits, for which a Boolean formula
that describes the behavior of each circuit does not
specify its structure.

Although, for JGs of this type, concepts of node and
state are synonyms, for PJGs, these concepts are not
equivalent.
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This feature of PJGs, which allows us to describe
and implement in a compact and clear form certain
classes of parallel processes by a single component
(since, otherwise, one has to construct and implement a
JG with a greater number of states), is connected with
a loss of the most important property of a JG without
flags and defaults. This property consists in a possibil-
ity to implement a JG, so that in the graph that describes
the behavior of “implementation,” the number of nodes
is the same as in the source JG.

In formal (and correct) transition from the JG to the
program text, this property may be fully retained for
some methods of realization and partially retained for
the others. The partial retainment of this property
means that, e.g., in description of a given JG (in the
case where the number of its nodes is not equal to a
power of two) by SBFs and the reverse construction of
a JG basing on this system, in a new graph nodes may
appear that do not belong to the source representation.
However, since there are not jumps from the nodes of
the given JG to the new ones, despite the presence of
jumps from new points to the given ones, this imple-
mentation is correct.

N

In implementation of JGs, for instance, by the
switch construction of the C programming language,
the specified property in view of their isomorphism can
be completely retained [29].

In an informal transition from a JG to a program, the
behavior of the program may differ from that of JG,
perhaps, in such a way that using the JG as a test for the
program, it is impossible to reveal their incompatibility.
This is because in the JG the label of practically every
Jjump is independent of some variables from the whole
set of input variables that in the program with errors can
be essential for the considered jump. For example, if a
jump in a JG is executed for the label x4, and in the pro-
gram the label x4&1x5 corresponds to this jump, then
this error may be detected only accidentally without the
exhaustive search or construction of the JG in terms of
the program. This supports once again Dijkstra’s state-
ment that tests can detect new and newer errors in the
program, but it is impossible to prove that after testing
that the program has no errors. That is why this paper
pays considerable attention to the construction of algo-
rithms and programs that are “clear” to Specialists of
various specialities. This must allow us to eliminate
many errors in these products as a result of coordina-
tion at different design stages including the initial ones.
Formality and isomorphism of construction of a pro-
gram based on “clear” specification, for which the
graph of attainable labelling is also constructed (and
corrected, if necessary), leads to the fact that a JG may
serve as a tool of program certification, rather than a
debugging facility.

The consistency of jump graphs (conjunction of
labels of any two arcs outgoing from the same node is
zero) is guaranteed:
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in the diverse arrival of contradictory values of vari-
ables;

in the operation with fronts of variables;

by orthogonalization (complication of labels) of
contradictory edges (for example, in the implementa-
tion according to SBFs);

by the arrangement of priorities (the order of
arrangement of program instructions in implementa-
tion by a method different from construction of SBFs is
taken into account);

by the “splitting” nodes with contradictory arcs (the
increase of the number of automaton states).

Completeness of the jump graph (disjunction of
labels for all arcs outgoing from the node is equal to
one) is verified after providing the consistency. In

implementation of a JG by SBFs, all edges outgoing

from each node have to be labelled, and for the other
variants of execution of labelling loops for automata
without an output transformer or a Moore automata
may be defaulted. It is supposed that labelling a loop at
a node guarantees its “completeness.”

JGs have generating circuits if at least for one of
them a conjunction of labels of all arcs that form is not
zero. The elimination of generating circuits is executed
by the same methods as the elimination of inconsis-
tency (except for the arrangement of priorities).

3.7. Coding of States of Automata

To implement a JG its nodes must have different
labels (codes).

Ifin a JG of AQ)_OT all nodes have different labels
(the values of the input variables), then the same labels
(as a whole, or particular components that distinguish
the labels) can be employed as codes of states of the
automaton. This method of coding is called forced.

Ifin a JG of A&)T labels of certain nodes coincide,
then to distinguish them, we introduce the least neces-
sary number of additional (intermediate or internal)
variables yi whose values distinguish identical nodes.
This method of coding is called forced—free.

For Moore, Mealy, and mixed automata, we use free
coding, for which codes of nodes of a JG are chosen
independently of the values of the output variables
associated with these nodes.

The “freedom” of coding for these types of autom-
ata in software implementation means that the codes for
the chosen methods of coding in contrast to the asyn-
chronous hardware implementation may be arbitrarily
assigned to nodes of a JG.

Among all forms of free coding in software imple-
mentation of automata, it is most advisory to employ
two forms of coding, namely, the binary and many-val-
ued (integral) ones.

In the first case, we assign to the ith node of a JG a
binary variable Yi that takes the unit value only in the
ith node and zero value in the others.

No. 6 2000

(2¢)
Fw/(

(cai.c



6_

910

In the second case, we assign to the entire /th JG a
single many-valued variable YI whose jth value in turn
is assigned to the jth node of the JG. This provides the
implementation of algorithms with the least possible
number of additional variables. 1t is this form of coding
that provides the best reading of programs. As another
advantage of this form, we highlight that it is not nec-
essary to clear the previous value of a many-valued
variable, since it is automatically performed in passing
to another value of this variable. It should be noted that
for a given single internal variable in one JG there is no
competition of memory “elements,” since this variable
has no competitors.

€& Moreover, in correct organization of computations,

there is no competition of memory elements for any
form of coding. A program may implement a given
algorithm either correctly or incorrectly, because, in
contrast to a single asynchronous diagram it cannot
behave in different ways depending on actual “ele-
ments’ delay.” The assignment of order of execution of
program instructions is a kind of synchronization. For
instance, if, as a programming language, we take the
language of functional diagrams, and, on the basis of
this language, we construct a circuit, then, in admissi-
bility of changes of values of the input variables only at
the beginning of a program cycle for one order of oper-
ation (numeration), this diagram has one completely
determined behavior, and for another numeration it has
another also completely determined behavior. In this
case, neither behavior can follow the desired one.

Therefore, in program implementation, for any form
of coding states that employs also not adjacent sets of
variables, in formal transition from a JG to a program,
this program in a “slow mode” (after a single computa-
tion under the program) operates in accordance with
the JG despite the fact that in a “fast mode” (during a
single computation) the values of variables may differ
from the desired ones. In this case, in contrast to asyn-
chronous circuits, difficulties do not arise, because
intermediate values of each variable calculated within a
program cycle are filtered.

‘ 6 For example, assume that in a direct jump from the

state of a JG with code 00 to the state with code 11 the
switching process is 00-10-11, where intermediate
value 10 is filtered. The transition through the state with
code 01 in program implementation based on SBFs is
impossible (in contrast to asynchronous circuits), since
the order of changing the values of variables is uniquely
determined by the order of arrangement of formulas in
the system.

3.8. Characteristic Properties of Application
of Jump Graphs

In implementation of an algorithm by a single JG of
the Moore automaton or the automaton without an out-
put transformer and formal transition to a program text
according to a jump graph without flags and defaults
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(this graph simultaneously is a graph of accessible
labelling that completely describes the behavior of the
automaton), this graph can also be a fest for verifying
the program. If the program is constructed based on the
JG not only formally, but isomorphically as well (the
descriptive equivalence between the JG and the pro-
gram text is guaranteed), then testing can be replaced
with the comparison of the program text with the JG.

If a JG has flags and defaults, then, to analyze its
behavior in detail, we have to construct the graph of
attainable labelling. This graph can be used as a certifi-
cation test of the program.

Interaction of JGs in a system of interconnected JGs
(SIJGs) can be performed in terms of the input, output,
and, especially, many-valued internal variables that
code nodes of graphs. This provides good obviousness
and eliminates the necessity of application of additional
internal variables for this purpose. A control algorithm
can be represented as a head and called graphs, as well
as in the form of components operating in parallel.
SLGs can also be constructed based on the embedding
principle. —3

At nodes (as in GRAPHSET-diagrams) and on arcs
of JGs, it is possible not only to assign and clear the
output binary variables but to also start processes
described, for example, by both JGs and AGDs as well.
In the description of a process happening at a point of a
JG with the help of AGD, it is repeatedly executed
while the automaton stays at this node and terminates
(after the termination of a recurrent pass of the AGD)
after a jump of the JG into a new node. The execution
at nodes of the graph of FDE jumps by means of a pulse
variable that takes unit values every second gives an
example of such a process.

For analysis of behavior (of all functionalities) of an
arbitrary system of jump graphs, even if each graph has
no flags and defaults, we have to construct a single (if
all JGs of the system are interconnected) or several (if
the system has separate groups of JGs) graphs of attain-
able labelling.

3.9. Basic Stages of Algorithmization in Application
of Jump Graphs

The diagram of connections information sources
(ISs)—controlling automaton—tools for information rep-
resentation (AIR)-actuators (ACs) is developed.

A controlling automaton is decomposed into an
automaton and FDE. This allows us to eliminate time
from a model; only bit variables ¢ required to start FDE
(the outputs of the automaton) and bit variables T indi-
cating an operation of these elements (the inputs of the
automaton) are employed. The previous diagram is
converted into the diagram of connections ISs—A—
FDE-AIR-ACs.

If necessary, the automaton is heuristically decom-
posed into a system of interconnected automata (SIA)
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of a lower dimension. The decomposition is performed
by modes, objects, or in a mixed way.

The construction of the diagram of connections ISs—
SIA-FDE-AIR-ACs completes the stage of the archi-
tectural (system) design.

Considering the ith automaton, along with func-
tional delay elements controlled by it as the ith control-
ling automaton, we can assume that the last diagram
contains a system of interconnected controlling autom-
ata.

For each automaton, we choose a structural model
(a combination automaton, an automaton without an
output transformer, a Moore automaton, Mealy autom-
aton, and so on). Then, we code states of automata with
memory.

 Constructing a correct jump graph that uniquely
corresponds to the chosen structural model and variant
of coding states, for an automaton with memory incor-
porated into each controlling automaton and combining
the graphs constructed into a system, we obtain a SIG,
which is a formal specification or a control algorithm.
At this stage, formal specification for FDEs and models
of control objects are also constructed. Construction of
specifications completes the second stage of design of
a control program.

" At the third stage of design (if necessary), we
choose, construct, and optimize algorithmic models
that implement formal specification taking into account
the type (the first or second) of the structural model of
each automaton with memory (for instance, the Moore
. automaton of the second type [39]).

The proposed technique includes methods of for-
malized passing from JGs to different types of algorith-
mic models. The main of them are systems of Boolean
formulas, functional diagrams, ladder diagrams, and
AGDs without internal feedbacks.

Clearly, JGs are also algorithmic models, for which
it is also necessary to know the type of the structural
model chosen before programming.

The choice of one or another algorithmic model
depends on the programming language. Certain lan-
guages, e.g., C are applicable for any model consid-
ered. For other languages, like functional diagrams, the
number of such models is restricted to one.

6’After the choice of algorithmic models for formal
specifications, we go to the last (the fourth) stage of the
technique proposed, namely, programming. At this
stage, after the choice of a programming language, for
each algorithmic model, we choose a software model
that specifies, among other things, the list of admissible
operators.

< A detailed example that illustrates the proposed
approach is presented in [40].
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3.10. Programming

In using each programming language, a program
formally constructed based on a JG (directly or on the
basis of other models) may be isomorphic or not iso-
morphic (by its structure) to the JG, based on which
way it was constructed.

In the first case, the proof of the equivalence of the
program to the corresponding JG can be obtained by
their comparison. In this case, the JG can always be
reconstructed directly based on the program text with-
out additional computations.

In the second case, the program is difficult to read,
but there is no need for this, because the program is for-
mally constructed on the basis of the JG, which should
be of interest alone. In this case, the program is tested
on the basis of the JG by the “scheme”: present state,
the input-next state, and the output. The verification
based on construction of the JG is essentially more
cumbersome in this case and connected with computa-
tions. It is natural that the isomorphism between the
program text and the JG is provided at the cost of exces-
siveness (it is impossible under rigid limitations on
memory capacity).

The main peculiarity of the proposed software
implementation is that in a program cycle, the program
executes no more than one jump in the JG, since, in the
opposite case, if, for a certain node of the JG of the
Moore automaton, conditions that label one of the
entering and one of the outgoing (except for a loop)
arcs are satisfied, then the values of the output and
internal variables that must be formed at this node are
filtered (dropped).

The proposed technique is called after the switch
construction of C programming language since it
allows one to most simply pass from the constructed JG
to the text of the program isomorphic to it in structure.
In this case, the operator, switch, which provides a mul-
tivariant (many-valued) choice, guarantees the decom-
position of automaton with respect to its internal states.

3.11. Software and Methodical Support
of the Technique

A possibility of fast, error-free, and isomorphic
going from a JG to a program text in a high-level lan-
guage, e.g., C, makes it possible to simplify consider-
ably the debugging and modeling of a controlling
automaton and, if necessary, of a complex CA-CE,
describing not only the automaton, but of the model of
the control object (by components and/or modes) based
on JG as well.

Under the author’s supervision, a program shell, that
allows one to change by a keyboard (on a personal com-
puter for SIJG involving N jump graphs implemented
in C) the values of the input variables and to watch on
a display the values of the output, temporary, and,
above all, N internal variables (only by one internal
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variable for each JG) in step-by-step and automatic
modes, is developed.

The possibility of a reading on the display of the
decimal number of state for each JG in each program
cycle by only a single many-valued variable makes the
program completely observable and controllable. This
fundamentally distinguishes the proposed technique
from the conventional techniques of programming.
Using the conventional techniques, it is always possible
to display (by a debugger) any variable and to keep
watch on changes of their values. However, in this case,
it is difficult to answer the following questions:

What variables should be used in the program to
ensure its effectiveness and controllability?

How many variables (especially, internal) should be
used?

What is characterized by each variable?

What set of variables should be displayed at each
stage of debugging?

What variables should be additionally introduced
into the program and displayed if at a certain stage of
debugging its workability has not yet been guaranteed?

Solving these problems for tasks of considered class
is considerably simplified, if we already at the stage of
developing the algorithm and/or its fragments intro-
duce (in a regular way) into them states instead of intro-
duction of individual variables (in an irregular way)
that represent components of states in the entire process
of program development.

If we employ a high-level algorithmic language
such as C, then after constructing an algorithm by the
technique proposed including its certification and mod-
eling by the shell mentioned, the development is com-
pleted. Using the other programming languages, at the
next stages, we formally (manually or automatically)
pass (perform a synthesis) from the program developed
to the program text in the language employed.

For example, for the PLC Autolog of FF-Automa-
tion, B.P. Kuznetsov (NPO Avrora), in cooperation with
the author of this paper, developed a C translator—
ALPro that makes it possible to obtain automatically
(using the text of the structured program written basing
in the JG in a subset of C) a program in the ALPro lan-
guage of instructions with translation controlling con-
structions chosen in advance, namely, a conditional
jump or step register [3].

With constraints on internal resources of PLC, the
author developed methods of “manual” formal imple-
mentation of a JG on the basis of ALPro. Methods of
implementation of JG on the basis of other program-
ming languages, like ladder and functional diagrams
[39], are also developed. One of these methods makes
it possible, among other things, to construct functional
diagrams isomorphic to JGs on the basis of elements
for the Selma-2 system [41].
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4. FINAL RECOMMENDATIONS

The proposed approach makes it possible:

(1) To apply the theory of finite-state deterministic
automata in algorithmization and programming of con-
trol processes.

(2) To describe initially desired behavior of a con-
trolling “device” rather than its structure, which is sec-
ondary and, therefore, more difficult for reading and
understanding.

(3) To introduce into algorithmization and program-
ming the concept of state (as a basic one) to begin algo-
rithmization from determination of the number of
states.

(4) To introduce the concept of automaton program-
ming and automaton program-development.

(52 To begin the construction of automata and pro-
grams from forming a decoder of states rather than
events.

(6) To use the basic structural models of the theory
of automata and to introduce new ones.

(7) To use as an algorithmization language jump
graphs and systems of interconnected jump graphs.

(8) In construction of jump graphs to eliminate the
dependence on “deep” prehistory of states and the out-
puts and, if possible, the dependence on the values of
the input variables of automata with memory from the
output variables of automata with memory.

(9) To employ many-valued coding of states for
each jump graph and to use independently of the num-
ber of its nodes only one internal variable that codes
them.

(10) To use, as the basic algorithmic model, jump
graphs of the Moore automata whose codes of states
and the output values are radically separated, and the
values of the output variables in each state are indepen-
dent of the input variables, which simplifies modifica-
tions.

(11) To provide realization of a number of proper-
ties of control algorithms such as composition, decom-
position, hierarchy, parallelism, invoking, and nesting.

(12) To have a single specification language in dif-
ferent programming languages, including specialized
ones employed in programmable logical controllers.

(13) To perform algorithmization as a result of con-
tacts between the Customer, Technologist, and Devel-
oper. The preparation of the specifications for the
project become a single process of contacts that are
completed by construction of the JG or a system of
interconnected JGs taking into account details with an
accuracy up to each state, jump, and bit, rather than a
single event with “endless” consequent supplements.

(14) To use JGs without flags and defaults, whose
number of nodes coincides with the number of states of
the automaton, as a certification test and to construct a
checking graph or a graph of attainable labelling for the
other classes of jump graphs or systems of intercon-
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nected jump graphs to check their behavior (this allows
one to replace testing of programs by the analysis of
their functionalities).

(15) To introduce a formal criterion of clearness of
various forms of descriptions of automata with mem-
ory, namely, the isomorphism of each automaton with
the corresponding JG without flags and defaults.

The automaton given by this JG may be called an
absolutely white box and the automaton given in any
other form is called a relatively white box.

An automaton for which the maximum number of
states in its minimum form is known (this automaton
can be recognized on the basis of analysis of the
“input—output” sequences) is called in [42] a relatively
black box, an automaton, whose internal content is
unknown (this automaton cannot be recognized in the
specified way), is called in [4] an absolutely black box.
Hence, if the concept of state in algorithmization and
programming is not introduced, then in response to the
testing of algorithms and programs by input—output
sequences, in the general case, it is impossible to recog-
nize automata implemented by these algorithms and
programs.

(16) To employ methods of formal and isomorphic
passing from the specifications to programs of logical
control in various programming languages.

(17) Applying high-level algorithmic languages to
program by using the switch constructions (including
nested ones) or analogous to them. In addition to the
isomorphism with the specification, this provides
accessibility of each value of the many-valued variable
that codes states of each jump graph, for the other
graphs of the system. Therefore, this eliminates the
necessity of additional internal variables for the inter-
action of graphs.

(18) To introduce into programming the concept of
observability (this makes it possible to consider a pro-
gram as an absolutely white box, in which all internal
variables, whose number is minimal, are accessible for
observation).

(19) To test programs in two stages: first, to check
the availability of all jumps provided by JG analyzing
numbers of states and, second, to check statically at
each state the values of the input variables.

(20) To assist Participants of a design (the Cus-
tomer, Technologist (Designer), Developer, Program-
mer, Operator (User), and Inspector) to understand
uniquely and completely what should be done, what is
done, and what has been done in the functional part of
the software implemented, i.e., to solve for the class of
problems considered a problem of mutual understand-
ing.

(21) To take into account the technical specifications
in detail at early stages of development and to demon-
strate to the Customer the way it is understood.

(22) To divide the work and, above all, the responsi-
bility among the Customer, Technologist, Developer,
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and Programmer. This is particularly important if spec-
ified Specialists are representatives of different organi-
zations and, especially, countries, since, in the opposite
case, essential linguistic and, in the end, economic
problems arise.

(23) To provide contact for Participants not rou-
tinely aware of terms of technological processes (for
example, a mode of special start does not “go”) in an
intermediate completely formalized language (techni-
cal Esperanto of a sort). One may speak for instance, in
the following way: “In the third JG at fifth node at the
fourth position, change the value from O to 1.” This
does not cause confusion that could arise through an
ambiguity of understanding even in one natural lan-
guage (and, especially, for several languages in the case
where Participants are representatives of different
countries) and does not require the participation of Spe-
cialists that can make sense of technological processes
for a correct introduction of changes [43].

(24) To make it possible for the Programmer not to
know peculiarities of a technological process and for
the Developer not to make sense of details of program-
ming.

(25) To make it possible for the Application Pro-
grammer not to think up something for the Customer,
Technologist, and Developer, but only to implement
formally and uniquely a system of JGs in the form of a
program. This allows us to reduce considerably the
requirement on his professional skill and, in the end, to
give up his services at all and employ computer-aided
programming or computer-aided programming by the
Developer. However, the last-mentioned way may be
used only in the case where programming is “open” for
the Developer, whereas this does not necessarily take
place especially if one works with foreign firms or their
entities that produce control systems, and not only
hardware.

(26) To leave clear “traces” upon completion of
development. This allows new persons to modify pro-
grams (in the traditional approach such modification is
very labor-consuming, because “it is easier to develop
a new program than to unravel somebody else’s”); in
this case, it should be noted that structuring and com-
ments solve this problem only partially.

(27) To simplify modifications of the specifications
and program and to improve their “reliability.”

(28) To make control algorithms invariant to pro-
gramming languages. This gives us an opportunity to
form and support libraries of algorithms written strictly
and formally.

(29) To provide an opportunity for the Customer,
Technologist, and Developer to verify texts of func-
tional programs, rather than to check the output, as it is
common practice nowadays.

(30) To eliminate differences in unequal “reliabil-
ity” of formally testing the hardware and software by
the Inspector, since, in the first case, besides the opera-
tion, he checks many other characteristics (for instance,
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the quality of printed circuit boards as well as their
coating, quality of soldered joints, values and designa-
tion of elements, and so on) and, in the second case,
attention is focused only on the check of operation,
whereas the internal organization of programs and
technique of their development are not studied.

5. PRACTICAL APPLICATION

The approach proposed was applied, specifically, to
the following:

In constructing a system of control of (DGR-2A
500%500 Diesel-generator for a vessel of project @io:
15640 on the basis of Selma-2. The programing is car-
ried out in NPO Avrora in the language of functional
blocks [2, 41].

In constructing a system of control of a Diesel-gen-
erator of the same type for a vessel of project no. 15760
in cooperation with Norcontrol (Norway). The program
implementation was carried out by the firm in PL/M
[43].

In constructing the complex system of control of
hardware components for a vessel of project no. 17310
on the basis of PLC Autolog. The program implemen-
tation was carried out by NPO Avrora in ALPro manu-
ally (for general-ship systems) and automatically by
using a translator (for systems of control of auxiliary
devices of the propulsion engine).

CONCLUSIONS

While the proposed and introduced in 1991 (by the
author) switch-technique was developed [41, 44], a
very strange situation arose. The leading firms in the
automation field (except for [22]) completely ignored
techniques of algorithmization and/or programming
based on jump graphs, which are the foundation of the
considered methodology. Only in 1996, this situation
fundamentally changed: Siemens, in addition to its
software, developed a new product called S7-HiGraph
technique software, which allows one to use state dia-

(another name of a transition graph) in program-
ming languages. This development gives an opportu-
nity to automatically generate executable (only PLCs
of this firm) codes, according to the description in the
language.

In the opinion of the officials of Siemens the
description in this language is not only appropriate for
the PLC Programmer, but is clear to the Mechanical
Engineer, Equipment Engineer, and Service Engineer
as well [21].

Especially strange in the cited situation is that such
a product could be developed, for example, fifteen
years ago, since state diagrams were proposed more
than forty years ago. However, world passion for Petri
nets, which provided the means for describing parallel—
serial processes by one component (functional unit)
and, therefore, represented the basis of GRAPHSET
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(S7-Graph technique software), most likely, psycho-
logically did not allow this to happen.

The author hopes that after the advent of the product
in question, a “domino effect” will take place and in the
immediate future many firms of the world will produce
analogous products.

It should be noted that [39] technique, which pro-
poses the use of jump graphs and systems of intercon-
nected graphs not only as a programming language, but
as a specification language for problems of logical con-
trol in employment of any other programming lan-
guages (for example, C or C++) as well, is described in
detail, can become a useful manual for employment of
controlling graphs in algorithmization and program-
ming for a wide class of Users of industrial computers
and p ble logical controllers (for example,
[45]), including the cases where translators from this
specification language are lacking. «

The discussed technique is an essential supplement
to International Standard IEC 1131-3 [46], in which
programming languages of PLCs are described, but
methods of algorithmization and programming
(described in detail in [39]) are not presented.

The proposed technique may become the basis for
an increase in safety of software for systems of logical
control [47].

This technique does not rule out other methods of
building “‘error-free” software [48], but it is signifi-
cantly more constructive, since it allows one to begin
“debugging” even at the stage of algorithmization.

The use of the pentad: state—independence of deep
prehistory-system of interconnected jump graphs—
many-valued coding—construction switch (or its analog
in any programming language, for instance, in a lan-
guage of functional diagrams) provides obviousness,
structuredness, invoking, nesting, hierarchy, controlla-
bility, and observability of programs as well as their
isomorphism (descriptive equivalence) with specifica-
tions, by which they are formally constructed. This
makes it possible for the Customer, Technologist
(Designer), Developer, Programmer, Operator (User),
and Inspector to understand each other uniquely and
know exactly what must be done, what is done, and
what has been done in software implemented design.
This also makes it possible to divide the work, as well
as the responsibility, and, in addition, easily and cor-
rectly introduce modifications into algorithms and pro-
grams.

Thus, it can be stated that, by analogy with a theory
of switching diagrams and probability theory, in this
paper it is proposed to construct parallel-serial and
Markov programs, which are easy to read and under-
stand, instead of bridge and non-Markov programs.

In conclusion, we note that, in [49] it is proposed to
use jump graphs in software implementation of algo-
rithms of logical control of technique processes. How-
ever, an approach presented there was insufficiently
“elegant” and this prohibited its wide practical use.
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The employment of systems of interconnected jump
graphs is considered in the works of H Rudnev (for
instance, [50]). However, their theoretical nature and
the use of binary variables for the connection of graphs
limit the implementation of this model in actual prac-
tice.

The author hopes that the fate of the proposed
approach in terms of its practical implementation will
be more successful.
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